Spaces:
Runtime error
Runtime error
File size: 6,750 Bytes
1f6c0e9 3e2a57b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
# Copyright 2022 Ken Kawamura
# Copyright BigScience, The HuggingFace Team and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# This file has been modifed from the original version on https://github.com/bigscience-workshop/t-zero/blob/master/evaluation/run_eval.py
import torch
from accelerate import Accelerator
from transformers import (AutoModelForCausalLM, AutoModelForSeq2SeqLM,
AutoTokenizer, set_seed)
def multi_inference_rank_eval(model_name_or_path, auto_class, ex_answer_choices, context):
accelerator = Accelerator()
set_seed(42)
model_name = model_name_or_path
if auto_class == 'Seq2SeqLM':
# e.g. 'google/t5-small-lm-adapt'
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
else:
# e.g. 'gpt2'
model = AutoModelForCausalLM.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
if tokenizer.pad_token is None:
for token in [tokenizer.eos_token, tokenizer.bos_token, tokenizer.sep_token]:
if token is not None:
tokenizer.pad_token = token
if tokenizer.pad_token is None:
raise ValueError("Please define a pad token id.")
padding = False
if auto_class == 'Seq2SeqLM':
def preprocess_function(context, ex_answer_choices):
input_texts = []
answer_choices_texts = []
input_texts.append(context)
answer_choices_texts.append(
[' ' + ans for ans in ex_answer_choices])
tokenized_inputs = tokenizer(
input_texts,
padding=padding,
max_length=1024,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = [
tokenizer(
ans_choi,
padding=True,
max_length=256,
truncation=True,
)
for ans_choi in answer_choices_texts
]
features = {
k: [
[elem for _ in range(
len(tokenized_targets[idx]["input_ids"]))]
for idx, elem in enumerate(v)
]
for k, v in tokenized_inputs.items()
}
features["labels"] = [
tokenized_targets[0]["input_ids"]
]
features["labels_attention_mask"] = [
tokenized_targets[0]["attention_mask"]
]
return features
else:
def preprocess_function(context, ex_answer_choices):
input_texts = []
answer_choices_texts = []
input_texts.append(context)
answer_choices_texts.append(
[' ' + ans for ans in ex_answer_choices])
tokenized_inputs = tokenizer(
input_texts,
padding=padding,
max_length=1024,
truncation=True,
add_special_tokens=False,
)
tokenized_targets = [
tokenizer(
ans_choi,
padding=True,
max_length=256,
truncation=True,
)
for ans_choi in answer_choices_texts
]
features = {
k: [
[elem for _ in range(
len(tokenized_targets[idx]["input_ids"]))]
for idx, elem in enumerate(v)
]
for k, v in tokenized_inputs.items()
}
features["labels"] = [
tokenized_targets[0]["input_ids"]
]
features["labels_attention_mask"] = [
tokenized_targets[0]["attention_mask"]
]
features["labels"] = [
[features["input_ids"][0][i][1:] + tokenized_targets[0]["input_ids"][i]
for i in range(len(tokenized_targets[0]["input_ids"]))]
]
features["input_ids"] = [
[features["input_ids"][0][i] + tokenized_targets[0]["input_ids"][i][:-1]
for i in range(len(tokenized_targets[0]["input_ids"]))]
]
features["labels_attention_mask"] = [
[[0] * (len(features["attention_mask"][0][i])-1) + tokenized_targets[0]
["attention_mask"][i] for i in range(len(tokenized_targets[0]["input_ids"]))]
]
features["attention_mask"] = [
[features["attention_mask"][0][i] + tokenized_targets[0]["attention_mask"][i][:-1]
for i in range(len(tokenized_targets[0]["input_ids"]))]
]
return features
device = accelerator.device
model.to(device)
batch = preprocess_function(context, ex_answer_choices)
batch = {
k: torch.tensor(batch[k][0]).to(device)
for k in batch.keys()
}
model.eval()
with torch.no_grad():
model_inputs = {
k: batch[k]
for k in (["input_ids", "attention_mask", "labels"] if auto_class == 'Seq2SeqLM' else ["input_ids", "attention_mask"])
}
logits = model(**model_inputs).logits
masked_log_probs = batch["labels_attention_mask"].unsqueeze(
-1) * torch.log_softmax(logits, dim=-1)
seq_token_log_probs = torch.gather(
masked_log_probs, -1, batch["labels"].unsqueeze(-1))
seq_log_prob = seq_token_log_probs.squeeze(dim=-1).sum(dim=-1)
seq_log_prob = seq_log_prob.view(1, -1)
predictions = seq_log_prob.argmax(dim=-1)
predictions = accelerator.gather(predictions)
return predictions.item()
if __name__ == "__main__":
multi_inference_rank_eval('google/t5-small-lm-adapt', 'Seq2SeqLM',
['True', 'False', 'True', 'Ken'], 'I am Ken. True or False')
# multi_inference_rank_eval('gpt2', 'CausalLM', ['True', 'False', 'True', 'Ken'], 'I am Ken. True or False')
|