File size: 14,156 Bytes
6035a99
 
 
 
 
 
 
 
 
 
 
b3738e8
 
 
 
 
6035a99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import os
import re
import sys
import json
import tempfile
import gradio as gr

from transformers import (
    TrainingArguments,
    HfArgumentParser,
)
try:
    from pycorenlp import StanfordCoreNLP
    print("pycorenlp imported successfully")
except ModuleNotFoundError as e:
    print(f"Import failed: {e}")

from robust_deid.ner_datasets import DatasetCreator
from robust_deid.sequence_tagging import SequenceTagger
from robust_deid.sequence_tagging.arguments import (
    ModelArguments,
    DataTrainingArguments,
    EvaluationArguments,
)
from robust_deid.deid import TextDeid

class App(object):
    
    def __init__(
        self,
        model,
        threshold,
        span_constraint='super_strict',
        sentencizer='en_core_sci_sm',
        tokenizer='clinical',
        max_tokens=128,
        max_prev_sentence_token=32,
        max_next_sentence_token=32,
        default_chunk_size=32,
        ignore_label='NA'
    ):
        # Create the dataset creator object
        self._dataset_creator = DatasetCreator(
            sentencizer=sentencizer,
            tokenizer=tokenizer,
            max_tokens=max_tokens,
            max_prev_sentence_token=max_prev_sentence_token,
            max_next_sentence_token=max_next_sentence_token,
            default_chunk_size=default_chunk_size,
            ignore_label=ignore_label
        )
        parser = HfArgumentParser((
        ModelArguments,
        DataTrainingArguments,
        EvaluationArguments,
        TrainingArguments
        ))
        model_config = App._get_model_config()
        model_config['model_name_or_path'] = App._get_model_map()[model]
        if threshold == 'No threshold':
            model_config['post_process'] = 'argmax'
            model_config['threshold'] = None
        else:
            model_config['post_process'] = 'threshold_max'
            model_config['threshold'] = \
            App._get_threshold_map()[model_config['model_name_or_path']][threshold]
        print(model_config)
        #sys.exit(0)
        with tempfile.NamedTemporaryFile("w+", delete=False) as tmp:
            tmp.write(json.dumps(model_config) + '\n')
            tmp.seek(0)
            # If we pass only one argument to the script and it's the path to a json file,
            # let's parse it to get our arguments.
            self._model_args, self._data_args, self._evaluation_args, self._training_args = \
            parser.parse_json_file(json_file=tmp.name)
        # Initialize the text deid object
        self._text_deid = TextDeid(notation=self._data_args.notation, span_constraint=span_constraint)
        # Initialize the sequence tagger
        self._sequence_tagger = SequenceTagger(
            task_name=self._data_args.task_name,
            notation=self._data_args.notation,
            ner_types=self._data_args.ner_types,
            model_name_or_path=self._model_args.model_name_or_path,
            config_name=self._model_args.config_name,
            tokenizer_name=self._model_args.tokenizer_name,
            post_process=self._model_args.post_process,
            cache_dir=self._model_args.cache_dir,
            model_revision=self._model_args.model_revision,
            use_auth_token=self._model_args.use_auth_token,
            threshold=self._model_args.threshold,
            do_lower_case=self._data_args.do_lower_case,
            fp16=self._training_args.fp16,
            seed=self._training_args.seed,
            local_rank=self._training_args.local_rank
        )
        # Load the required functions of the sequence tagger
        self._sequence_tagger.load()
        
            
    def get_ner_dataset(self, notes_file):
        ner_notes = self._dataset_creator.create(
            input_file=notes_file,
            mode='predict',
            notation=self._data_args.notation,
            token_text_key='text',
            metadata_key='meta',
            note_id_key='note_id',
            label_key='label',
            span_text_key='spans'
        )
        return ner_notes
    
    def get_predictions(self, ner_notes_file):
        # Set the required data and predictions of the sequence tagger
        # Can also use self._data_args.test_file instead of ner_dataset_file (make sure it matches ner_dataset_file)
        self._sequence_tagger.set_predict(
            test_file=ner_notes_file,
            max_test_samples=self._data_args.max_predict_samples,
            preprocessing_num_workers=self._data_args.preprocessing_num_workers,
            overwrite_cache=self._data_args.overwrite_cache
        )
        # Initialize the huggingface trainer
        self._sequence_tagger.setup_trainer(training_args=self._training_args)
        # Store predictions in the specified file
        predictions = self._sequence_tagger.predict()
        return predictions
    
    def get_deid_text_removed(self, notes_file, predictions_file):
        deid_notes = self._text_deid.run_deid(
            input_file=notes_file,
            predictions_file=predictions_file,
            deid_strategy='remove',
            keep_age=False,
            metadata_key='meta',
            note_id_key='note_id',
            tokens_key='tokens',
            predictions_key='predictions',
            text_key='text',
        )
        return deid_notes
    
    def get_deid_text_replaced(self, notes_file, predictions_file):
        deid_notes = self._text_deid.run_deid(
            input_file=notes_file,
            predictions_file=predictions_file,
            deid_strategy='replace_informative',
            keep_age=False,
            metadata_key='meta',
            note_id_key='note_id',
            tokens_key='tokens',
            predictions_key='predictions',
            text_key='text',
        )
        return deid_notes
    
    
    @staticmethod
    def _get_highlights(deid_text):
        pattern = re.compile('<<(PATIENT|STAFF|AGE|DATE|LOCATION|PHONE|ID|EMAIL|PATORG|HOSPITAL|OTHERPHI):(.)*?>>')
        tag_pattern = re.compile('<<(PATIENT|STAFF|AGE|DATE|LOCATION|PHONE|ID|EMAIL|PATORG|HOSPITAL|OTHERPHI):')
        text_list = []
        current_start = 0
        current_end = 0
        for match in re.finditer(pattern, deid_text):
            full_start, full_end = match.span()
            sub_text = deid_text[full_start:full_end]
            sub_match = re.search(tag_pattern, sub_text)
            sub_span = sub_match.span()
            tag_length = sub_match.span()[1] - sub_match.span()[0]
            yield (deid_text[current_start:full_start], None)
            yield (deid_text[full_start+sub_span[1]:full_end-2], sub_match.string[sub_span[0]+2:sub_span[1]-1])
            current_start = full_end
        yield (deid_text[full_end:], None)
    
    @staticmethod
    def _get_model_map():
        return {
            'OBI-RoBERTa De-ID':'obi/deid_roberta_i2b2',
            'OBI-ClinicalBERT De-ID':'obi/deid_bert_i2b2'
        }
    
    @staticmethod
    def _get_threshold_map():
        return {
            'obi/deid_bert_i2b2':{"99.5": 4.656325975101986e-06, "99.7":1.8982457699258832e-06},
            'obi/deid_roberta_i2b2':{"99.5": 2.4362972672812125e-05, "99.7":2.396420546444644e-06}
        }
    
    @staticmethod
    def _get_model_config():
        return {
            "post_process":None,
            "threshold": None,
            "model_name_or_path":None,
            "task_name":"ner",
            "notation":"BILOU",
            "ner_types":["PATIENT", "STAFF", "AGE", "DATE", "PHONE", "ID", "EMAIL", "PATORG", "LOC", "HOSP", "OTHERPHI"],
            "truncation":True,
            "max_length":512,
            "label_all_tokens":False,
            "return_entity_level_metrics":True,
            "text_column_name":"tokens",
            "label_column_name":"labels",
            "output_dir":"./run/models",
            "logging_dir":"./run/logs",
            "overwrite_output_dir":False,
            "do_train":False,
            "do_eval":False,
            "do_predict":True,
            "report_to":[],
            "per_device_train_batch_size":0,
            "per_device_eval_batch_size":16,
            "logging_steps":1000
        }

def deid(text, model, threshold):
    notes = [{"text": text, "meta": {"note_id": "note_1", "patient_id": "patient_1"}, "spans": []}]
    app = App(model, threshold)
    # Create temp notes file
    with tempfile.NamedTemporaryFile("w+", delete=False) as tmp:
        for note in notes:
            tmp.write(json.dumps(note) + '\n')
        tmp.seek(0)
        ner_notes = app.get_ner_dataset(tmp.name)
    # Create temp ner_notes file    
    with tempfile.NamedTemporaryFile("w+", delete=False) as tmp:
        for ner_sentence in ner_notes:
            tmp.write(json.dumps(ner_sentence) + '\n')
        tmp.seek(0)
        predictions = app.get_predictions(tmp.name)
    # Get deid text
    with tempfile.NamedTemporaryFile("w+", delete=False) as tmp,\
    tempfile.NamedTemporaryFile("w+", delete=False) as tmp_1:
        for note in notes:
            tmp.write(json.dumps(note) + '\n')
        for note_prediction in predictions:
            tmp_1.write(json.dumps(note_prediction) + '\n')
        tmp.seek(0)
        tmp_1.seek(0)
        deid_text = list(app.get_deid_text_replaced(tmp.name, tmp_1.name))[0]['deid_text']
        deid_text_remove = list(app.get_deid_text_removed(tmp.name, tmp_1.name))[0]['deid_text']
    return [highlight_text for highlight_text in App._get_highlights(deid_text)], deid_text_remove

recall_choices = ["No threshold", "99.5", "99.7"]
recall_radio_input = gr.inputs.Radio(recall_choices, type="value", default='No threshold', label='RECALL THRESHOLD')

model_choices = list(App._get_model_map().keys())
model_radio_input = gr.inputs.Radio(model_choices, type="value", default='OBI-RoBERTa De-ID', label='DE-ID MODEL')

title = 'DE-IDENTIFICATION OF ELECTRONIC HEALTH RECORDS'
description = 'Models to remove private information (PHI/PII) from raw medical notes. The recall threshold (bias) can be used to remove PHI more aggressively.'

gradio_input = gr.inputs.Textbox(
    lines=10,
    placeholder='Enter text with PHI',
    label='RAW MEDICAL NOTE'
)

gradio_highlight_output = gr.outputs.HighlightedText(
    label='LABELED DE-IDENTIFIED MEDICAL NOTE',
)

gradio_text_output = gr.outputs.Textbox(
    label='DE-IDENTIFIED MEDICAL NOTE'
)

examples = [["Physician Discharge Summary Admit date: 10/12/1982 Discharge date: 10/22/1982 Patient Information Jack Reacher, 54 y.o. male (DOB = 1/21/1928). Home Address: 123 Park Drive, San Diego, CA, 03245. Home Phone: 202-555-0199 (home). Hospital Care Team Service: Orthopedics Inpatient Attending: Roger C Kelly, MD Attending phys phone: (634)743-5135 Discharge Unit: HCS843 Primary Care Physician: Hassan V Kim, MD 512-832-5025.", "OBI-RoBERTa De-ID", "No threshold"], ["Consult NotePt: Ulysses Ogrady MC #0937884Date: 07/01/19 Williams Ct M OSCAR, JOHNNY Hyderabad, WI 62297\n\nHISTORY OF PRESENT ILLNESS: The patient is a 77-year-old-woman with long standing hypertension who presented as a Walk-in to me at the Brigham Health Center on Friday. Recently had been started q.o.d. on Clonidine since 01/15/19 to taper off of the drug. Was told to start Zestril 20 mg. q.d. again. The patient was sent to the Unit for direct admission for cardioversion and anticoagulation, with the Cardiologist, Dr. Wilson to follow.\nSOCIAL HISTORY: Lives alone, has one daughter living in Nantucket. Is a non-smoker, and does not drink alcohol.\nHOSPITAL COURSE AND TREATMENT: During admission, the patient was seen by Cardiology, Dr. Wilson, was started on IV Heparin, Sotalol 40 mg PO b.i.d. increased to 80 mg b.i.d., and had an echocardiogram. By 07-22-19 the patient had better rate control and blood pressure control but remained in atrial fibrillation. On 08.03.19, the patient was felt to be medically stable.", "OBI-RoBERTa De-ID", "99.5"], ["Consult NotePt: Ulysses Ogrady MC #0937884Date: 07/01/19 Williams Ct M OSCAR, JOHNNY Hyderabad, WI 62297\n\nHISTORY OF PRESENT ILLNESS: The patient is a 77-year-old-woman with long standing hypertension who presented as a Walk-in to me at the Brigham Health Center on Friday. Recently had been started q.o.d. on Clonidine since 01/15/19 to taper off of the drug. Was told to start Zestril 20 mg. q.d. again. The patient was sent to the Unit for direct admission for cardioversion and anticoagulation, with the Cardiologist, Dr. Wilson to follow.\nSOCIAL HISTORY: Lives alone, has one daughter living in Nantucket. Is a non-smoker, and does not drink alcohol.\nHOSPITAL COURSE AND TREATMENT: During admission, the patient was seen by Cardiology, Dr. Wilson, was started on IV Heparin, Sotalol 40 mg PO b.i.d. increased to 80 mg b.i.d., and had an echocardiogram. By 07-22-19 the patient had better rate control and blood pressure control but remained in atrial fibrillation. On 08.03.19, the patient was felt to be medically stable.", "OBI-ClinicalBERT De-ID", "99.5"], ['HPI: Pt is a 59 yo Khazakhstani male, with who was admitted to San Rafael Mount Hospital following a syncopal nauseas and was brought to Rafael Mount ED. Five weeks ago prior Anemia: On admission to Rafael Hospital, Hb/Hct: 11.6/35.5. Tobacco: Quit at 38 y/o; ETOH: 1-2 beers/week; Caffeine:\nDD:05/05/2022 DT:05/05/2022 WK:65255 :4653\nNO GROWTH TO DATE Specimen: 38:Z8912708G Collected\n\n2nd set biomarkers (WPH): Creatine Kinase Isoenzymes Hospitalized 2115 TCH for ROMI 2120 TCH new onset\n\nLab Tests Amador: the lab results show good levels of 10MG PO qd : 04/10/2021 - 05/15/2021 ACT : rosenberg 128\n placed 3/22 for bradycardia. P/G model #5435, serial # 4712198. \n\nSocial history: Married, glazier, 3 grown adult children. Has VNA. Former civil engineer, supervisor, consultant. She is looking forward to a good Christmas. She is here today',
 "OBI-ClinicalBERT De-ID", 'No threshold']]

iface = gr.Interface(
    title=title,
    description=description,
    theme='huggingface',
    layout='horizontal',
    examples=examples,
    fn=deid,
    inputs=[gradio_input, model_radio_input, recall_radio_input],
    outputs=[gradio_highlight_output, gradio_text_output],
)
iface.launch()