Spaces:
Sleeping
Sleeping
import streamlit as st | |
import numpy as np | |
import pickle | |
import streamlit.components.v1 as components | |
from sklearn.preprocessing import LabelEncoder | |
# Load the pickled model | |
def load_model(): | |
return pickle.load(open('online_payment_fraud_detection_randomforest.pkl', 'rb')) | |
# Load the LabelEncoder | |
def load_label_encoder(): | |
with open('label_encoder.pkl', 'rb') as f: | |
return pickle.load(f) | |
# Function for model prediction | |
def model_prediction(model, features): | |
predicted = str(model.predict(features)[0]) | |
return predicted | |
def transform(le, text): | |
text = le.transform(text) | |
return text[0] | |
def app_design(le): | |
# Add input fields for High, Open, and Low values | |
image = 'Ramdevs2' | |
st.image(image, use_column_width=True) | |
st.subheader("Enter the following values:") | |
step = st.number_input("Step: represents a unit of time where 1 step equals 1 hour") | |
typeup = st.selectbox('Type of online transaction', ('PAYMENT', 'TRANSFER', 'CASH_OUT', 'DEBIT', 'CASH_IN')) | |
typeup = transform(le, [typeup]) | |
amount = st.number_input("The amount of the transaction") | |
nameOrig = st.text_input("Transaction ID") | |
nameOrig = transform(le, [nameOrig]) | |
oldbalanceOrg = st.number_input("Balance before the transaction") | |
newbalanceOrig = st.number_input("Balance after the transaction") | |
nameDest = st.text_input("Recipient ID") | |
nameDest = transform(le, [nameDest]) | |
oldbalanceDest = st.number_input("Initial balance of recipient before the transaction") | |
newbalanceDest = st.number_input("The new balance of recipient after the transaction") | |
isFlaggedFraud = st.selectbox('IsFlaggedFraud', ('Yes', 'No')) | |
isFlaggedFraud = transform(le, [isFlaggedFraud]) | |
# Create a feature list from the user inputs | |
features = [[step, typeup, amount, nameOrig, oldbalanceOrg, newbalanceOrig, nameDest, oldbalanceDest, newbalanceDest, isFlaggedFraud]] | |
# Load the model | |
model = load_model() | |
# Make a prediction when the user clicks the "Predict" button | |
if st.button('Predict Online Payment Fraud'): | |
predicted_value = model_prediction(model, features) | |
if predicted_value == '1': | |
st.success("Online payment fraud not happened") | |
else: | |
st.success("Online payment fraud happened") | |
def about_RamDevs(): | |
components.html(""" | |
<div> | |
#bla bla bla | |
</div> | |
""", height=600) | |
def main(): | |
st.set_page_config(page_title="Online Payment Fraud Detection", page_icon=":chart_with_upwards_trend:") | |
st.title("Welcome to our Online Payment Fraud Detection App!") | |
le = load_label_encoder() | |
app_design(le) | |
st.header("About RamDevs Community") | |
about_RamDevs() | |
if __name__ == '__main__': | |
main() |