import streamlit as st import numpy as np import pickle import streamlit.components.v1 as components from sklearn.preprocessing import LabelEncoder # Load the pickled model def load_model(): return pickle.load(open('online_payment_fraud_detection_randomforest.pkl', 'rb')) # Load the LabelEncoder def load_label_encoder(): with open('label_encoder.pkl', 'rb') as f: return pickle.load(f) # Function for model prediction def model_prediction(model, features): predicted = str(model.predict(features)[0]) return predicted def transform(le, text): text = le.transform(text) return text[0] def app_design(le): # Add input fields for High, Open, and Low values # image = 'Ramdevs2' # st.image(image, use_column_width=True) st.subheader("Enter the following values:") step = st.number_input("Step: represents a unit of time where 1 step equals 1 hour") typeup = st.selectbox('Type of online transaction', ('PAYMENT', 'TRANSFER', 'CASH_OUT', 'DEBIT', 'CASH_IN')) typeup = transform(le, [typeup]) amount = st.number_input("The amount of the transaction") nameOrig = st.text_input("Transaction ID") nameOrig = transform(le, [nameOrig]) oldbalanceOrg = st.number_input("Balance before the transaction") newbalanceOrig = st.number_input("Balance after the transaction") nameDest = st.text_input("Recipient ID") nameDest = transform(le, [nameDest]) oldbalanceDest = st.number_input("Initial balance of recipient before the transaction") newbalanceDest = st.number_input("The new balance of recipient after the transaction") isFlaggedFraud = st.selectbox('IsFlaggedFraud', ('Yes', 'No')) isFlaggedFraud = transform(le, [isFlaggedFraud]) # Create a feature list from the user inputs features = [[step, typeup, amount, nameOrig, oldbalanceOrg, newbalanceOrig, nameDest, oldbalanceDest, newbalanceDest, isFlaggedFraud]] # Load the model model = load_model() # Make a prediction when the user clicks the "Predict" button if st.button('Predict Online Payment Fraud'): predicted_value = model_prediction(model, features) if predicted_value == '1': st.success("Online payment fraud detected") else: st.success("No online payment fraud detected") def about_RamDevs(): components.html("""
🔍 Seeking the perfect hassle-free safe online transactions? RamDevs Community is your gateway to easier and safer transactions. Explore free expert sessions, customer support, and password transformation tips.
đź’Ľ We offer an upskill program in CyberSecurity, Password management, Legal Terms and Services, and assist customers in security and safer online transactions at minimal development costs.
🆓 Best of all, everything we offer is completely free! We are dedicated to helping society.
Book free of cost 1:1 mentorship on any topic of your choice — topmate
✨ We dedicate over 30 minutes to each applicant’s Password selection, Online profile, mock frauds, and upskill program. If you’d like our guidance, check out our services here
đź’ˇ Join us now, and turbocharge your CyberSecurity!