Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- .gitattributes +1 -0
- README.md +6 -4
- app.py +95 -0
- requirements.txt +10 -0
- test1.mp3 +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
test1.mp3 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
-
title: ISOM5240 Group25
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.32.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: ISOM5240 Group25
|
3 |
+
emoji: 👀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: yellow
|
6 |
sdk: streamlit
|
7 |
sdk_version: 1.32.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
python_version: "3.8"
|
11 |
+
|
12 |
---
|
13 |
|
14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import WhisperForConditionalGeneration, WhisperProcessor
|
3 |
+
from transformers import pipeline
|
4 |
+
import librosa
|
5 |
+
import torch
|
6 |
+
from spleeter.separator import Separator
|
7 |
+
from pydub import AudioSegment
|
8 |
+
from IPython.display import Audio
|
9 |
+
import os
|
10 |
+
import accelerate
|
11 |
+
|
12 |
+
# steamlit setup
|
13 |
+
st.set_page_config(page_title="Sentiment Analysis on Your Cantonese Song",)
|
14 |
+
st.header("Cantonese Song Sentiment Analyzer")
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
# load song
|
19 |
+
input_file = ""
|
20 |
+
output_file = "/content/"
|
21 |
+
|
22 |
+
# preprocess and crop audio file
|
23 |
+
def audio_preprocess():
|
24 |
+
# separate music and vocal
|
25 |
+
separator = Separator('spleeter:2stems')
|
26 |
+
separator.separate_to_file(input_file, output_file)
|
27 |
+
|
28 |
+
# Crop the audio
|
29 |
+
start_time = 60000 # e.g. 30 seconds, 30000
|
30 |
+
end_time = 110000 # e.g. 40 seconds, 40000
|
31 |
+
|
32 |
+
audio = AudioSegment.from_file('/content/test1/vocals.wav')
|
33 |
+
cropped_audio = audio[start_time:end_time]
|
34 |
+
cropped_audio.export('/content/cropped_vocals.wav', format='wav') # save vocal audio file
|
35 |
+
|
36 |
+
|
37 |
+
# ASR transcription
|
38 |
+
def asr_model():
|
39 |
+
# load audio file
|
40 |
+
y, sr = librosa.load('cropped_vocals.wav', sr=16000)
|
41 |
+
|
42 |
+
# ASR model
|
43 |
+
MODEL_NAME = "RexChan/ISOM5240-whisper-small-zhhk_1"
|
44 |
+
processor = WhisperProcessor.from_pretrained(MODEL_NAME)
|
45 |
+
model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME, low_cpu_mem_usage=True)
|
46 |
+
|
47 |
+
model.config.forced_decoder_ids = None
|
48 |
+
model.config.suppress_tokens = []
|
49 |
+
model.config.use_cache = False
|
50 |
+
|
51 |
+
processed_in = processor(y, sampling_rate=sr, return_tensors="pt")
|
52 |
+
gout = model.generate(
|
53 |
+
input_features=processed_in.input_features,
|
54 |
+
output_scores=True, return_dict_in_generate=True
|
55 |
+
)
|
56 |
+
transcription = processor.batch_decode(gout.sequences, skip_special_tokens=True)[0]
|
57 |
+
|
58 |
+
# print result
|
59 |
+
print(f"Song lyrics = {transcription}")
|
60 |
+
|
61 |
+
return transcription
|
62 |
+
|
63 |
+
|
64 |
+
# sentiment analysis
|
65 |
+
def senti_model(transcription):
|
66 |
+
|
67 |
+
pipe = pipeline("text-classification", model="lxyuan/distilbert-base-multilingual-cased-sentiments-student")
|
68 |
+
final_result = pipe(transcription)
|
69 |
+
print(f"Sentiment Analysis shows that this song is {final_result[0]['label']}. Confident level of this analysis is {final_result[0]['score']*100:.1f}%.")
|
70 |
+
|
71 |
+
return final_result
|
72 |
+
|
73 |
+
|
74 |
+
# main
|
75 |
+
def main():
|
76 |
+
|
77 |
+
input_file = st.file_uploader("upload a song in mp3 format", type="mp3") # upload song
|
78 |
+
if input_file is not None:
|
79 |
+
st.write("File uploaded successfully!")
|
80 |
+
else:
|
81 |
+
st.write("No file uploaded.")
|
82 |
+
audio_preprocess()
|
83 |
+
transcription = asr_model()
|
84 |
+
final_result = senti_model(transcription)
|
85 |
+
|
86 |
+
if st.button("Play Audio"):
|
87 |
+
st.audio(audio_data['audio'],
|
88 |
+
format="audio/wav",
|
89 |
+
start_time=0,
|
90 |
+
sample_rate = audio_data['sampling_rate'])
|
91 |
+
|
92 |
+
|
93 |
+
if __name__ == '__main__':
|
94 |
+
clicked = st.button("Run Analysis")
|
95 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
librosa
|
3 |
+
spleeter
|
4 |
+
pydub
|
5 |
+
torch
|
6 |
+
accelerate
|
7 |
+
tensorflow
|
8 |
+
ipython
|
9 |
+
protobuf==3.20.*
|
10 |
+
ffmpeg-python
|
test1.mp3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:34e9acc0397bc9b30351ca37ef126a1de61c0a933b82ac1cadde06cee965a569
|
3 |
+
size 3359169
|