Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,22 @@ import streamlit as st
|
|
2 |
from streamlit_mic_recorder import mic_recorder
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
|
|
|
|
6 |
|
7 |
def callback():
|
8 |
if st.session_state.my_recorder_output:
|
9 |
audio_bytes = st.session_state.my_recorder_output['bytes']
|
10 |
st.audio(audio_bytes)
|
11 |
|
12 |
-
def
|
13 |
-
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-
|
14 |
-
|
15 |
-
|
16 |
-
return
|
17 |
|
18 |
-
def
|
19 |
'''
|
20 |
This function takes list of texts and returns input_ids and attention_mask of texts
|
21 |
'''
|
@@ -38,6 +40,13 @@ def load_model():
|
|
38 |
return model, tokenizer
|
39 |
|
40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
def predict(text, model, tokenizer):
|
42 |
lookup_key ={0: 'Hardware',
|
43 |
1: 'Access',
|
@@ -47,31 +56,64 @@ def predict(text, model, tokenizer):
|
|
47 |
5: 'Administrative rights',
|
48 |
6: 'Storage',
|
49 |
7: 'Internal Project'}
|
50 |
-
with torch.no_grad():
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
54 |
predicted_label = lookup_key.get(predicted_class_id)
|
55 |
-
|
|
|
56 |
|
57 |
|
58 |
def main():
|
59 |
|
60 |
-
st.set_page_config(layout="wide", page_title="IT Service
|
|
|
|
|
61 |
|
62 |
with st.sidebar:
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
if button:
|
67 |
-
st.
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
st.write(f'{prediction}')
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
if __name__ == '__main__':
|
77 |
main()
|
|
|
2 |
from streamlit_mic_recorder import mic_recorder
|
3 |
from transformers import pipeline
|
4 |
import torch
|
5 |
+
from transformers import BertTokenizer, BertForSequenceClassification, AutoModelForSequenceClassification, AutoTokenizer
|
6 |
+
import numpy as np
|
7 |
+
import pandas as pd
|
8 |
|
9 |
def callback():
|
10 |
if st.session_state.my_recorder_output:
|
11 |
audio_bytes = st.session_state.my_recorder_output['bytes']
|
12 |
st.audio(audio_bytes)
|
13 |
|
14 |
+
def transcribe_and_translate(upload):
|
15 |
+
pipe = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
|
16 |
+
transcribe_result = pipe(upload, generate_kwargs={'task': 'transcribe'})
|
17 |
+
translate_result = pipe(upload, generate_kwargs={'task': 'translate'})
|
18 |
+
return transcribe_result['text'], translate_result['text']
|
19 |
|
20 |
+
def encode_depracated(docs, tokenizer):
|
21 |
'''
|
22 |
This function takes list of texts and returns input_ids and attention_mask of texts
|
23 |
'''
|
|
|
40 |
return model, tokenizer
|
41 |
|
42 |
|
43 |
+
def load_model():
|
44 |
+
PRETRAINED_LM = "kkngan/bert-base-uncased-it-service-classification"
|
45 |
+
model = AutoModelForSequenceClassification.from_pretrained(PRETRAINED_LM, num_labels=8)
|
46 |
+
tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_LM)
|
47 |
+
return model, tokenizer
|
48 |
+
|
49 |
+
|
50 |
def predict(text, model, tokenizer):
|
51 |
lookup_key ={0: 'Hardware',
|
52 |
1: 'Access',
|
|
|
56 |
5: 'Administrative rights',
|
57 |
6: 'Storage',
|
58 |
7: 'Internal Project'}
|
59 |
+
# with torch.no_grad():
|
60 |
+
# input_ids, att_mask = encode([text], tokenizer)
|
61 |
+
# logits = model(input_ids = input_ids, attention_mask=att_mask).logits
|
62 |
+
inputs = tokenizer(text,
|
63 |
+
padding = True,
|
64 |
+
truncation = True,
|
65 |
+
return_tensors='pt')
|
66 |
+
outputs = model(**inputs)
|
67 |
+
predicted_class_id = outputs.logits.argmax().item()
|
68 |
predicted_label = lookup_key.get(predicted_class_id)
|
69 |
+
probability = torch.nn.functional.softmax(outputs.logits, dim=-1).cpu().detach().numpy()
|
70 |
+
return predicted_label, probability
|
71 |
|
72 |
|
73 |
def main():
|
74 |
|
75 |
+
st.set_page_config(layout="wide", page_title="NLP IT Service Classification", page_icon="🤖",)
|
76 |
+
st.markdown('<b>🤖 Welcome to IT Service Classification Assistant!!! 🤖</b>', unsafe_allow_html=True)
|
77 |
+
st.write(f'\n')
|
78 |
|
79 |
with st.sidebar:
|
80 |
+
st.image('front_page_image.jpg' , use_column_width=True)
|
81 |
+
options = st.selectbox("Pick select an input method", ["Start a recording", "Upload an audio", "Enter a transcript"])
|
82 |
+
if options == "Start a recording":
|
83 |
+
audio = mic_recorder(key='my_recorder', callback=callback)
|
84 |
+
elif options == "Upload an audio":
|
85 |
+
audio = st.file_uploader("Please upload an audio")
|
86 |
+
else:
|
87 |
+
text = st.text_area("Please input the transcript (Only support English)")
|
88 |
+
button = st.button('Submit')
|
89 |
|
90 |
if button:
|
91 |
+
with st.spinner(text="Loading... It may take longer for initialisation."):
|
92 |
+
model, tokenizer = load_model()
|
93 |
+
if options == "Start a recording":
|
94 |
+
transcibe_text, translate_text = transcribe_and_translate(upload=audio["bytes"])
|
95 |
+
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
96 |
+
elif options == "Upload an audio":
|
97 |
+
transcibe_text, translate_text = transcribe_and_translate(upload=audio.getvalue)
|
98 |
+
prediction, probability = predict(text=translate_text, model=model, tokenizer=tokenizer)
|
99 |
+
else:
|
100 |
+
transcibe_text = text
|
101 |
+
prediction, probability = predict(text=text, model=model, tokenizer=tokenizer)
|
102 |
+
st.markdown('<font color="blue"><b>Transcript:</b></font>', unsafe_allow_html=True)
|
103 |
+
st.write(f'{transcibe_text}')
|
104 |
+
st.write(f'\n')
|
105 |
+
if options != "Enter a transcript":
|
106 |
+
st.markdown('<font color="red"><b>Translation:</b></font>', unsafe_allow_html=True)
|
107 |
+
st.write(f'{translate_text}')
|
108 |
+
st.write(f'\n')
|
109 |
+
st.markdown('<font color="green"><b>Predicted Class:</b></font>', unsafe_allow_html=True)
|
110 |
st.write(f'{prediction}')
|
111 |
|
112 |
+
# Convert probability to bar
|
113 |
+
st.write(f'\n')
|
114 |
+
objects = ('Hardware', 'Access', 'Miscellaneous', 'HR Support', 'Purchase', 'Administrative rights', 'Storage', 'Internal Project')
|
115 |
+
df = pd.DataFrame({'Categories': objects, 'Probability': probability[0]})
|
116 |
+
st.bar_chart(data=df, x='Categories', y='Probability')
|
117 |
+
|
118 |
if __name__ == '__main__':
|
119 |
main()
|