kkpathak91 commited on
Commit
b74a24a
·
1 Parent(s): 51ec97a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +101 -2
app.py CHANGED
@@ -1,5 +1,3 @@
1
- # -*- coding: utf-8 -*-
2
-
3
  """
4
  @Author : Jiangjie Chen
5
  @Time : 2021/12/13 17:17
@@ -41,5 +39,106 @@ config['fc_dir'] = os.path.join(model_dir, 'fact_checking/roberta-large/')
41
  config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
42
  config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')
43
 
 
44
  from src.loren import Loren
45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  """
2
  @Author : Jiangjie Chen
3
  @Time : 2021/12/13 17:17
 
39
  config['mrc_dir'] = os.path.join(model_dir, 'mrc_seq2seq/bart-base/')
40
  config['er_dir'] = os.path.join(model_dir, 'evidence_retrieval/')
41
 
42
+
43
  from src.loren import Loren
44
 
45
+
46
+ loren = Loren(config, verbose=False)
47
+ try:
48
+ js = loren.check('Donald Trump won the 2020 U.S. presidential election.')
49
+ except Exception as e:
50
+ raise ValueError(e)
51
+
52
+
53
+ def highlight_phrase(text, phrase):
54
+ text = loren.fc_client.tokenizer.clean_up_tokenization(text)
55
+ return text.replace('<mask>', f'<i><b>{phrase}</b></i>')
56
+
57
+
58
+ def highlight_entity(text, entity):
59
+ return text.replace(entity, f'<i><b>{entity}</b></i>')
60
+
61
+
62
+ def gradio_formatter(js, output_type):
63
+ zebra_css = '''
64
+ tr:nth-child(even) {
65
+ background: #f1f1f1;
66
+ }
67
+ thead{
68
+ background: #f1f1f1;
69
+ }'''
70
+ if output_type == 'e':
71
+ data = {'Evidence': [highlight_entity(x, e) for x, e in zip(js['evidence'], js['entities'])]}
72
+ elif output_type == 'z':
73
+ p_sup, p_ref, p_nei = [], [], []
74
+ for x in js['phrase_veracity']:
75
+ max_idx = torch.argmax(torch.tensor(x)).tolist()
76
+ x = ['%.4f' % xx for xx in x]
77
+ x[max_idx] = f'<i><b>{x[max_idx]}</b></i>'
78
+ p_sup.append(x[2])
79
+ p_ref.append(x[0])
80
+ p_nei.append(x[1])
81
+
82
+ data = {
83
+ 'Claim Phrase': js['claim_phrases'],
84
+ 'Local Premise': [highlight_phrase(q, x[0]) for q, x in zip(js['cloze_qs'], js['evidential'])],
85
+ 'p_SUP': p_sup,
86
+ 'p_REF': p_ref,
87
+ 'p_NEI': p_nei,
88
+ }
89
+ else:
90
+ raise NotImplementedError
91
+ data = pd.DataFrame(data)
92
+ pt = PrettyTable(field_names=list(data.columns),
93
+ align='l', border=True, hrules=1, vrules=1)
94
+ for v in data.values:
95
+ pt.add_row(v)
96
+ html = pt.get_html_string(attributes={
97
+ 'style': 'border-width: 2px; bordercolor: black'
98
+ }, format=True)
99
+ html = f'<head> <style type="text/css"> {zebra_css} </style> </head>\n' + html
100
+ html = html.replace('&lt;', '<').replace('&gt;', '>')
101
+ return html
102
+
103
+
104
+ def run(claim):
105
+ try:
106
+ js = loren.check(claim)
107
+ except Exception as error_msg:
108
+ exc = traceback.format_exc()
109
+ msg = f'[Error]: {error_msg}.\n[Traceback]: {exc}'
110
+ loren.logger.error(claim)
111
+ loren.logger.error(msg)
112
+ return 'Oops, something went wrong.', '', ''
113
+ label = js['claim_veracity']
114
+ loren.logger.warning(label + str(js))
115
+ ev_html = gradio_formatter(js, 'e')
116
+ z_html = gradio_formatter(js, 'z')
117
+ return label, z_html, ev_html
118
+
119
+
120
+ iface = gr.Interface(
121
+ fn=run,
122
+ inputs="text",
123
+ outputs=[
124
+ 'text',
125
+ 'html',
126
+ 'html',
127
+ ],
128
+ examples=['Donald Trump won the U.S. 2020 presidential election.',
129
+ 'The first inauguration of Bill Clinton was in the United States.',
130
+ 'The Cry of the Owl is based on a book by an American.',
131
+ 'Smriti Mandhana is an Indian woman.'],
132
+ title="LOREN",
133
+ layout='horizontal',
134
+ description="LOREN is an interpretable Fact Verification model using Wikipedia as its knowledge source. "
135
+ "This is a demo system for the AAAI 2022 paper: \"LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification\"(https://arxiv.org/abs/2012.13577). "
136
+ "See the paper for more details. You can add a *FLAG* on the bottom to record interesting or bad cases! "
137
+ "(Note that the demo system directly retrieves evidence from an up-to-date Wikipedia, which is different from the evidence used in the paper.)",
138
+ flagging_dir='results/flagged/',
139
+ allow_flagging=True,
140
+ flagging_options=['Interesting!', 'Error: Claim Phrase Parsing', 'Error: Local Premise',
141
+ 'Error: Require Commonsense', 'Error: Evidence Retrieval'],
142
+ enable_queue=True
143
+ )
144
+ iface.launch()