File size: 7,738 Bytes
35e2575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# colmap mapper/colmap point_triangulator/glomap mapper from mast3r matches
# --------------------------------------------------------
import pycolmap
import os
import os.path as path
import kapture.io
import kapture.io.csv
import subprocess
import PIL
from tqdm import tqdm
import PIL.Image
import numpy as np
from typing import List, Tuple, Union

from mast3r.model import AsymmetricMASt3R
from mast3r.colmap.database import export_matches, get_im_matches

import mast3r.utils.path_to_dust3r  # noqa
from dust3r_visloc.datasets.utils import get_resize_function

import kapture
from kapture.converter.colmap.database_extra import get_colmap_camera_ids_from_db, get_colmap_image_ids_from_db
from kapture.utils.paths import path_secure

from dust3r.datasets.utils.transforms import ImgNorm
from dust3r.inference import inference


def scene_prepare_images(root: str, maxdim: int, patch_size: int, image_paths: List[str]):
    images = []
    # image loading
    for idx in tqdm(range(len(image_paths))):
        rgb_image = PIL.Image.open(os.path.join(root, image_paths[idx])).convert('RGB')

        # resize images
        W, H = rgb_image.size
        resize_func, _, to_orig = get_resize_function(maxdim, patch_size, H, W)
        rgb_tensor = resize_func(ImgNorm(rgb_image))

        # image dictionary
        images.append({'img': rgb_tensor.unsqueeze(0),
                       'true_shape': np.int32([rgb_tensor.shape[1:]]),
                       'to_orig': to_orig,
                       'idx': idx,
                       'instance': image_paths[idx],
                       'orig_shape': np.int32([H, W])})
    return images


def remove_duplicates(images, image_pairs):
    pairs_added = set()
    pairs = []
    for (i, _), (j, _) in image_pairs:
        smallidx, bigidx = min(i, j), max(i, j)
        if (smallidx, bigidx) in pairs_added:
            continue
        pairs_added.add((smallidx, bigidx))
        pairs.append((images[i], images[j]))
    return pairs


def run_mast3r_matching(model: AsymmetricMASt3R, maxdim: int, patch_size: int, device,
                        kdata: kapture.Kapture, root_path: str, image_pairs_kapture: List[Tuple[str, str]],
                        colmap_db,
                        dense_matching: bool, pixel_tol: int, conf_thr: float, skip_geometric_verification: bool,
                        min_len_track: int):
    assert kdata.records_camera is not None
    image_paths = kdata.records_camera.data_list()
    image_path_to_idx = {image_path: idx for idx, image_path in enumerate(image_paths)}
    image_path_to_ts = {kdata.records_camera[ts, camid]: (ts, camid) for ts, camid in kdata.records_camera.key_pairs()}

    images = scene_prepare_images(root_path, maxdim, patch_size, image_paths)
    image_pairs = [((image_path_to_idx[image_path1], image_path1), (image_path_to_idx[image_path2], image_path2))
                   for image_path1, image_path2 in image_pairs_kapture]
    matching_pairs = remove_duplicates(images, image_pairs)

    colmap_camera_ids = get_colmap_camera_ids_from_db(colmap_db, kdata.records_camera)
    colmap_image_ids = get_colmap_image_ids_from_db(colmap_db)
    im_keypoints = {idx: {} for idx in range(len(image_paths))}

    im_matches = {}
    image_to_colmap = {}
    for image_path, idx in image_path_to_idx.items():
        _, camid = image_path_to_ts[image_path]
        colmap_camid = colmap_camera_ids[camid]
        colmap_imid = colmap_image_ids[image_path]
        image_to_colmap[idx] = {
            'colmap_imid': colmap_imid,
            'colmap_camid': colmap_camid
        }

    # compute 2D-2D matching from dust3r inference
    for chunk in tqdm(range(0, len(matching_pairs), 4)):
        pairs_chunk = matching_pairs[chunk:chunk + 4]
        output = inference(pairs_chunk, model, device, batch_size=1, verbose=False)
        pred1, pred2 = output['pred1'], output['pred2']
        # TODO handle caching
        im_images_chunk = get_im_matches(pred1, pred2, pairs_chunk, image_to_colmap,
                                         im_keypoints, conf_thr, not dense_matching, pixel_tol)
        im_matches.update(im_images_chunk.items())

    # filter matches, convert them and export keypoints and matches to colmap db
    colmap_image_pairs = export_matches(
        colmap_db, images, image_to_colmap, im_keypoints, im_matches, min_len_track, skip_geometric_verification)
    colmap_db.commit()

    return colmap_image_pairs


def pycolmap_run_triangulator(colmap_db_path, prior_recon_path, recon_path, image_root_path):
    print("running mapping")
    reconstruction = pycolmap.Reconstruction(prior_recon_path)
    pycolmap.triangulate_points(
        reconstruction=reconstruction,
        database_path=colmap_db_path,
        image_path=image_root_path,
        output_path=recon_path,
        refine_intrinsics=False,
    )


def pycolmap_run_mapper(colmap_db_path, recon_path, image_root_path):
    print("running mapping")
    reconstructions = pycolmap.incremental_mapping(
        database_path=colmap_db_path,
        image_path=image_root_path,
        output_path=recon_path,
        options=pycolmap.IncrementalPipelineOptions({'multiple_models': False,
                                                     'extract_colors': True,
                                                     })
    )


def glomap_run_mapper(glomap_bin, colmap_db_path, recon_path, image_root_path):
    print("running mapping")
    args = [
        'mapper',
        '--database_path',
        colmap_db_path,
        '--image_path',
        image_root_path,
        '--output_path',
        recon_path
    ]
    args.insert(0, glomap_bin)
    glomap_process = subprocess.Popen(args)
    glomap_process.wait()

    if glomap_process.returncode != 0:
        raise ValueError(
            '\nSubprocess Error (Return code:'
            f' {glomap_process.returncode} )')


def kapture_import_image_folder_or_list(images_path: Union[str, Tuple[str, List[str]]], use_single_camera=False) -> kapture.Kapture:
    images = kapture.RecordsCamera()

    if isinstance(images_path, str):
        images_root = images_path
        file_list = [path.relpath(path.join(dirpath, filename), images_root)
                     for dirpath, dirs, filenames in os.walk(images_root)
                     for filename in filenames]
        file_list = sorted(file_list)
    else:
        images_root, file_list = images_path

    sensors = kapture.Sensors()
    for n, filename in enumerate(file_list):
        # test if file is a valid image
        try:
            # lazy load
            with PIL.Image.open(path.join(images_root, filename)) as im:
                width, height = im.size
                model_params = [width, height]
        except (OSError, PIL.UnidentifiedImageError):
            # It is not a valid image: skip it
            print(f'Skipping invalid image file {filename}')
            continue

        camera_id = f'sensor'
        if use_single_camera and camera_id not in sensors:
            sensors[camera_id] = kapture.Camera(kapture.CameraType.UNKNOWN_CAMERA, model_params)
        elif use_single_camera:
            assert sensors[camera_id].camera_params[0] == width and sensors[camera_id].camera_params[1] == height
        else:
            camera_id = camera_id + f'{n}'
            sensors[camera_id] = kapture.Camera(kapture.CameraType.UNKNOWN_CAMERA, model_params)

        images[(n, camera_id)] = path_secure(filename)  # don't forget windows

    return kapture.Kapture(sensors=sensors, records_camera=images)