Spaces:
Configuration error
Configuration error
File size: 7,738 Bytes
35e2575 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# colmap mapper/colmap point_triangulator/glomap mapper from mast3r matches
# --------------------------------------------------------
import pycolmap
import os
import os.path as path
import kapture.io
import kapture.io.csv
import subprocess
import PIL
from tqdm import tqdm
import PIL.Image
import numpy as np
from typing import List, Tuple, Union
from mast3r.model import AsymmetricMASt3R
from mast3r.colmap.database import export_matches, get_im_matches
import mast3r.utils.path_to_dust3r # noqa
from dust3r_visloc.datasets.utils import get_resize_function
import kapture
from kapture.converter.colmap.database_extra import get_colmap_camera_ids_from_db, get_colmap_image_ids_from_db
from kapture.utils.paths import path_secure
from dust3r.datasets.utils.transforms import ImgNorm
from dust3r.inference import inference
def scene_prepare_images(root: str, maxdim: int, patch_size: int, image_paths: List[str]):
images = []
# image loading
for idx in tqdm(range(len(image_paths))):
rgb_image = PIL.Image.open(os.path.join(root, image_paths[idx])).convert('RGB')
# resize images
W, H = rgb_image.size
resize_func, _, to_orig = get_resize_function(maxdim, patch_size, H, W)
rgb_tensor = resize_func(ImgNorm(rgb_image))
# image dictionary
images.append({'img': rgb_tensor.unsqueeze(0),
'true_shape': np.int32([rgb_tensor.shape[1:]]),
'to_orig': to_orig,
'idx': idx,
'instance': image_paths[idx],
'orig_shape': np.int32([H, W])})
return images
def remove_duplicates(images, image_pairs):
pairs_added = set()
pairs = []
for (i, _), (j, _) in image_pairs:
smallidx, bigidx = min(i, j), max(i, j)
if (smallidx, bigidx) in pairs_added:
continue
pairs_added.add((smallidx, bigidx))
pairs.append((images[i], images[j]))
return pairs
def run_mast3r_matching(model: AsymmetricMASt3R, maxdim: int, patch_size: int, device,
kdata: kapture.Kapture, root_path: str, image_pairs_kapture: List[Tuple[str, str]],
colmap_db,
dense_matching: bool, pixel_tol: int, conf_thr: float, skip_geometric_verification: bool,
min_len_track: int):
assert kdata.records_camera is not None
image_paths = kdata.records_camera.data_list()
image_path_to_idx = {image_path: idx for idx, image_path in enumerate(image_paths)}
image_path_to_ts = {kdata.records_camera[ts, camid]: (ts, camid) for ts, camid in kdata.records_camera.key_pairs()}
images = scene_prepare_images(root_path, maxdim, patch_size, image_paths)
image_pairs = [((image_path_to_idx[image_path1], image_path1), (image_path_to_idx[image_path2], image_path2))
for image_path1, image_path2 in image_pairs_kapture]
matching_pairs = remove_duplicates(images, image_pairs)
colmap_camera_ids = get_colmap_camera_ids_from_db(colmap_db, kdata.records_camera)
colmap_image_ids = get_colmap_image_ids_from_db(colmap_db)
im_keypoints = {idx: {} for idx in range(len(image_paths))}
im_matches = {}
image_to_colmap = {}
for image_path, idx in image_path_to_idx.items():
_, camid = image_path_to_ts[image_path]
colmap_camid = colmap_camera_ids[camid]
colmap_imid = colmap_image_ids[image_path]
image_to_colmap[idx] = {
'colmap_imid': colmap_imid,
'colmap_camid': colmap_camid
}
# compute 2D-2D matching from dust3r inference
for chunk in tqdm(range(0, len(matching_pairs), 4)):
pairs_chunk = matching_pairs[chunk:chunk + 4]
output = inference(pairs_chunk, model, device, batch_size=1, verbose=False)
pred1, pred2 = output['pred1'], output['pred2']
# TODO handle caching
im_images_chunk = get_im_matches(pred1, pred2, pairs_chunk, image_to_colmap,
im_keypoints, conf_thr, not dense_matching, pixel_tol)
im_matches.update(im_images_chunk.items())
# filter matches, convert them and export keypoints and matches to colmap db
colmap_image_pairs = export_matches(
colmap_db, images, image_to_colmap, im_keypoints, im_matches, min_len_track, skip_geometric_verification)
colmap_db.commit()
return colmap_image_pairs
def pycolmap_run_triangulator(colmap_db_path, prior_recon_path, recon_path, image_root_path):
print("running mapping")
reconstruction = pycolmap.Reconstruction(prior_recon_path)
pycolmap.triangulate_points(
reconstruction=reconstruction,
database_path=colmap_db_path,
image_path=image_root_path,
output_path=recon_path,
refine_intrinsics=False,
)
def pycolmap_run_mapper(colmap_db_path, recon_path, image_root_path):
print("running mapping")
reconstructions = pycolmap.incremental_mapping(
database_path=colmap_db_path,
image_path=image_root_path,
output_path=recon_path,
options=pycolmap.IncrementalPipelineOptions({'multiple_models': False,
'extract_colors': True,
})
)
def glomap_run_mapper(glomap_bin, colmap_db_path, recon_path, image_root_path):
print("running mapping")
args = [
'mapper',
'--database_path',
colmap_db_path,
'--image_path',
image_root_path,
'--output_path',
recon_path
]
args.insert(0, glomap_bin)
glomap_process = subprocess.Popen(args)
glomap_process.wait()
if glomap_process.returncode != 0:
raise ValueError(
'\nSubprocess Error (Return code:'
f' {glomap_process.returncode} )')
def kapture_import_image_folder_or_list(images_path: Union[str, Tuple[str, List[str]]], use_single_camera=False) -> kapture.Kapture:
images = kapture.RecordsCamera()
if isinstance(images_path, str):
images_root = images_path
file_list = [path.relpath(path.join(dirpath, filename), images_root)
for dirpath, dirs, filenames in os.walk(images_root)
for filename in filenames]
file_list = sorted(file_list)
else:
images_root, file_list = images_path
sensors = kapture.Sensors()
for n, filename in enumerate(file_list):
# test if file is a valid image
try:
# lazy load
with PIL.Image.open(path.join(images_root, filename)) as im:
width, height = im.size
model_params = [width, height]
except (OSError, PIL.UnidentifiedImageError):
# It is not a valid image: skip it
print(f'Skipping invalid image file {filename}')
continue
camera_id = f'sensor'
if use_single_camera and camera_id not in sensors:
sensors[camera_id] = kapture.Camera(kapture.CameraType.UNKNOWN_CAMERA, model_params)
elif use_single_camera:
assert sensors[camera_id].camera_params[0] == width and sensors[camera_id].camera_params[1] == height
else:
camera_id = camera_id + f'{n}'
sensors[camera_id] = kapture.Camera(kapture.CameraType.UNKNOWN_CAMERA, model_params)
images[(n, camera_id)] = path_secure(filename) # don't forget windows
return kapture.Kapture(sensors=sensors, records_camera=images)
|