File size: 14,791 Bytes
35e2575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
#!/usr/bin/env python3
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# gradio demo functions
# --------------------------------------------------------
import pycolmap
import gradio
import os
import numpy as np
import functools
import trimesh
import copy
from scipy.spatial.transform import Rotation
import tempfile
import shutil
import PIL.Image
import torch

from kapture.converter.colmap.database_extra import kapture_to_colmap
from kapture.converter.colmap.database import COLMAPDatabase

from mast3r.colmap.mapping import kapture_import_image_folder_or_list, run_mast3r_matching, glomap_run_mapper
from mast3r.demo import set_scenegraph_options
from mast3r.retrieval.processor import Retriever
from mast3r.image_pairs import make_pairs

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.utils.image import load_images
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL
from dust3r.demo import get_args_parser as dust3r_get_args_parser

import matplotlib.pyplot as pl


class GlomapRecon:
    def __init__(self, world_to_cam, intrinsics, points3d, imgs):
        self.world_to_cam = world_to_cam
        self.intrinsics = intrinsics
        self.points3d = points3d
        self.imgs = imgs


class GlomapReconState:
    def __init__(self, glomap_recon, should_delete=False, cache_dir=None, outfile_name=None):
        self.glomap_recon = glomap_recon
        self.cache_dir = cache_dir
        self.outfile_name = outfile_name
        self.should_delete = should_delete

    def __del__(self):
        if not self.should_delete:
            return
        if self.cache_dir is not None and os.path.isdir(self.cache_dir):
            shutil.rmtree(self.cache_dir)
        self.cache_dir = None
        if self.outfile_name is not None and os.path.isfile(self.outfile_name):
            os.remove(self.outfile_name)
        self.outfile_name = None


def get_args_parser():
    parser = dust3r_get_args_parser()
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--gradio_delete_cache', default=None, type=int,
                        help='age/frequency at which gradio removes the file. If >0, matching cache is purged')
    parser.add_argument('--glomap_bin', default='glomap', type=str, help='glomap bin')
    parser.add_argument('--retrieval_model', default=None, type=str, help="retrieval_model to be loaded")

    actions = parser._actions
    for action in actions:
        if action.dest == 'model_name':
            action.choices = ["MASt3R_ViTLarge_BaseDecoder_512_catmlpdpt_metric"]
    # change defaults
    parser.prog = 'mast3r demo'
    return parser


def get_reconstructed_scene(glomap_bin, outdir, gradio_delete_cache, model, retrieval_model, device, silent, image_size,
                            current_scene_state, filelist, transparent_cams, cam_size, scenegraph_type, winsize,
                            win_cyclic, refid, shared_intrinsics, **kw):
    """
    from a list of images, run mast3r inference, sparse global aligner.
    then run get_3D_model_from_scene
    """
    imgs = load_images(filelist, size=image_size, verbose=not silent)
    if len(imgs) == 1:
        imgs = [imgs[0], copy.deepcopy(imgs[0])]
        imgs[1]['idx'] = 1
        filelist = [filelist[0], filelist[0]]

    scene_graph_params = [scenegraph_type]
    if scenegraph_type in ["swin", "logwin"]:
        scene_graph_params.append(str(winsize))
    elif scenegraph_type == "oneref":
        scene_graph_params.append(str(refid))
    elif scenegraph_type == "retrieval":
        scene_graph_params.append(str(winsize))  # Na
        scene_graph_params.append(str(refid))  # k

    if scenegraph_type in ["swin", "logwin"] and not win_cyclic:
        scene_graph_params.append('noncyclic')
    scene_graph = '-'.join(scene_graph_params)

    sim_matrix = None
    if 'retrieval' in scenegraph_type:
        assert retrieval_model is not None
        retriever = Retriever(retrieval_model, backbone=model, device=device)
        with torch.no_grad():
            sim_matrix = retriever(filelist)

        # Cleanup
        del retriever
        torch.cuda.empty_cache()

    pairs = make_pairs(imgs, scene_graph=scene_graph, prefilter=None, symmetrize=True, sim_mat=sim_matrix)

    if current_scene_state is not None and \
        not current_scene_state.should_delete and \
            current_scene_state.cache_dir is not None:
        cache_dir = current_scene_state.cache_dir
    elif gradio_delete_cache:
        cache_dir = tempfile.mkdtemp(suffix='_cache', dir=outdir)
    else:
        cache_dir = os.path.join(outdir, 'cache')

    root_path = os.path.commonpath(filelist)
    filelist_relpath = [
        os.path.relpath(filename, root_path).replace('\\', '/')
        for filename in filelist
    ]
    kdata = kapture_import_image_folder_or_list((root_path, filelist_relpath), shared_intrinsics)
    image_pairs = [
        (filelist_relpath[img1['idx']], filelist_relpath[img2['idx']])
        for img1, img2 in pairs
    ]

    colmap_db_path = os.path.join(cache_dir, 'colmap.db')
    if os.path.isfile(colmap_db_path):
        os.remove(colmap_db_path)

    os.makedirs(os.path.dirname(colmap_db_path), exist_ok=True)
    colmap_db = COLMAPDatabase.connect(colmap_db_path)
    try:
        kapture_to_colmap(kdata, root_path, tar_handler=None, database=colmap_db,
                          keypoints_type=None, descriptors_type=None, export_two_view_geometry=False)
        colmap_image_pairs = run_mast3r_matching(model, image_size, 16, device,
                                                 kdata, root_path, image_pairs, colmap_db,
                                                 False, 5, 1.001,
                                                 False, 3)
        colmap_db.close()
    except Exception as e:
        print(f'Error {e}')
        colmap_db.close()
        exit(1)

    if len(colmap_image_pairs) == 0:
        raise Exception("no matches were kept")

    # colmap db is now full, run colmap
    colmap_world_to_cam = {}
    print("verify_matches")
    f = open(cache_dir + '/pairs.txt', "w")
    for image_path1, image_path2 in colmap_image_pairs:
        f.write("{} {}\n".format(image_path1, image_path2))
    f.close()
    pycolmap.verify_matches(colmap_db_path, cache_dir + '/pairs.txt')

    reconstruction_path = os.path.join(cache_dir, "reconstruction")
    if os.path.isdir(reconstruction_path):
        shutil.rmtree(reconstruction_path)
    os.makedirs(reconstruction_path, exist_ok=True)
    glomap_run_mapper(glomap_bin, colmap_db_path, reconstruction_path, root_path)

    if current_scene_state is not None and \
        not current_scene_state.should_delete and \
            current_scene_state.outfile_name is not None:
        outfile_name = current_scene_state.outfile_name
    else:
        outfile_name = tempfile.mktemp(suffix='_scene.glb', dir=outdir)

    ouput_recon = pycolmap.Reconstruction(os.path.join(reconstruction_path, '0'))
    print(ouput_recon.summary())

    colmap_world_to_cam = {}
    colmap_intrinsics = {}
    colmap_image_id_to_name = {}
    images = {}
    num_reg_images = ouput_recon.num_reg_images()
    for idx, (colmap_imgid, colmap_image) in enumerate(ouput_recon.images.items()):
        colmap_image_id_to_name[colmap_imgid] = colmap_image.name
        if callable(colmap_image.cam_from_world.matrix):
            colmap_world_to_cam[colmap_imgid] = colmap_image.cam_from_world.matrix(
            )
        else:
            colmap_world_to_cam[colmap_imgid] = colmap_image.cam_from_world.matrix
        camera = ouput_recon.cameras[colmap_image.camera_id]
        K = np.eye(3)
        K[0, 0] = camera.focal_length_x
        K[1, 1] = camera.focal_length_y
        K[0, 2] = camera.principal_point_x
        K[1, 2] = camera.principal_point_y
        colmap_intrinsics[colmap_imgid] = K

        with PIL.Image.open(os.path.join(root_path, colmap_image.name)) as im:
            images[colmap_imgid] = np.asarray(im)

        if idx + 1 == num_reg_images:
            break  # bug with the iterable ?
    points3D = []
    num_points3D = ouput_recon.num_points3D()
    for idx, (pt3d_id, pts3d) in enumerate(ouput_recon.points3D.items()):
        points3D.append((pts3d.xyz, pts3d.color))
        if idx + 1 == num_points3D:
            break  # bug with the iterable ?
    scene = GlomapRecon(colmap_world_to_cam, colmap_intrinsics, points3D, images)
    scene_state = GlomapReconState(scene, gradio_delete_cache, cache_dir, outfile_name)
    outfile = get_3D_model_from_scene(silent, scene_state, transparent_cams, cam_size)
    return scene_state, outfile


def get_3D_model_from_scene(silent, scene_state, transparent_cams=False, cam_size=0.05):
    """
    extract 3D_model (glb file) from a reconstructed scene
    """
    if scene_state is None:
        return None
    outfile = scene_state.outfile_name
    if outfile is None:
        return None

    recon = scene_state.glomap_recon

    scene = trimesh.Scene()
    pts = np.stack([p[0] for p in recon.points3d], axis=0)
    col = np.stack([p[1] for p in recon.points3d], axis=0)
    pct = trimesh.PointCloud(pts, colors=col)
    scene.add_geometry(pct)

    # add each camera
    cams2world = []
    for i, (id, pose_w2c_3x4) in enumerate(recon.world_to_cam.items()):
        intrinsics = recon.intrinsics[id]
        focal = (intrinsics[0, 0] + intrinsics[1, 1]) / 2.0
        camera_edge_color = CAM_COLORS[i % len(CAM_COLORS)]
        pose_w2c = np.eye(4)
        pose_w2c[:3, :] = pose_w2c_3x4
        pose_c2w = np.linalg.inv(pose_w2c)
        cams2world.append(pose_c2w)
        add_scene_cam(scene, pose_c2w, camera_edge_color,
                      None if transparent_cams else recon.imgs[id], focal,
                      imsize=recon.imgs[id].shape[1::-1], screen_width=cam_size)

    rot = np.eye(4)
    rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
    scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
    if not silent:
        print('(exporting 3D scene to', outfile, ')')
    scene.export(file_obj=outfile)

    return outfile


def main_demo(glomap_bin, tmpdirname, model, retrieval_model, device, image_size, server_name, server_port,
              silent=False, share=False, gradio_delete_cache=False):
    if not silent:
        print('Outputing stuff in', tmpdirname)

    recon_fun = functools.partial(get_reconstructed_scene, glomap_bin, tmpdirname, gradio_delete_cache, model,
                                  retrieval_model, device, silent, image_size)
    model_from_scene_fun = functools.partial(get_3D_model_from_scene, silent)

    available_scenegraph_type = [("complete: all possible image pairs", "complete"),
                                 ("swin: sliding window", "swin"),
                                 ("logwin: sliding window with long range", "logwin"),
                                 ("oneref: match one image with all", "oneref")]
    if retrieval_model is not None:
        available_scenegraph_type.insert(1, ("retrieval: connect views based on similarity", "retrieval"))

    def get_context(delete_cache):
        css = """.gradio-container {margin: 0 !important; min-width: 100%};"""
        title = "MASt3R Demo"
        if delete_cache:
            return gradio.Blocks(css=css, title=title, delete_cache=(delete_cache, delete_cache))
        else:
            return gradio.Blocks(css=css, title="MASt3R Demo")  # for compatibility with older versions

    with get_context(gradio_delete_cache) as demo:
        # scene state is save so that you can change conf_thr, cam_size... without rerunning the inference
        scene = gradio.State(None)
        gradio.HTML('<h2 style="text-align: center;">MASt3R Demo</h2>')
        with gradio.Column():
            inputfiles = gradio.File(file_count="multiple")
            with gradio.Row():
                shared_intrinsics = gradio.Checkbox(value=False, label="Shared intrinsics",
                                                    info="Only optimize one set of intrinsics for all views")
                scenegraph_type = gradio.Dropdown(available_scenegraph_type,
                                                  value='complete', label="Scenegraph",
                                                  info="Define how to make pairs",
                                                  interactive=True)
                with gradio.Column(visible=False) as win_col:
                    winsize = gradio.Slider(label="Scene Graph: Window Size", value=1,
                                            minimum=1, maximum=1, step=1)
                    win_cyclic = gradio.Checkbox(value=False, label="Cyclic sequence")
                refid = gradio.Slider(label="Scene Graph: Id", value=0,
                                      minimum=0, maximum=0, step=1, visible=False)
            run_btn = gradio.Button("Run")

            with gradio.Row():
                # adjust the camera size in the output pointcloud
                cam_size = gradio.Slider(label="cam_size", value=0.01, minimum=0.001, maximum=1.0, step=0.001)
            with gradio.Row():
                transparent_cams = gradio.Checkbox(value=False, label="Transparent cameras")

            outmodel = gradio.Model3D()

            # events
            scenegraph_type.change(set_scenegraph_options,
                                   inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                                   outputs=[win_col, winsize, win_cyclic, refid])
            inputfiles.change(set_scenegraph_options,
                              inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                              outputs=[win_col, winsize, win_cyclic, refid])
            win_cyclic.change(set_scenegraph_options,
                              inputs=[inputfiles, win_cyclic, refid, scenegraph_type],
                              outputs=[win_col, winsize, win_cyclic, refid])
            run_btn.click(fn=recon_fun,
                          inputs=[scene, inputfiles, transparent_cams, cam_size,
                                  scenegraph_type, winsize, win_cyclic, refid, shared_intrinsics],
                          outputs=[scene, outmodel])
            cam_size.change(fn=model_from_scene_fun,
                            inputs=[scene, transparent_cams, cam_size],
                            outputs=outmodel)
            transparent_cams.change(model_from_scene_fun,
                                    inputs=[scene, transparent_cams, cam_size],
                                    outputs=outmodel)
    demo.launch(share=share, server_name=server_name, server_port=server_port)