Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,15 +5,16 @@ import logging
|
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
|
|
|
|
|
|
8 |
from transformers import (
|
9 |
AutoTokenizer,
|
10 |
AutoModelForSeq2SeqLM,
|
11 |
pipeline,
|
12 |
BitsAndBytesConfig,
|
13 |
)
|
14 |
-
from langdetect import detect, LangDetectException
|
15 |
import evaluate
|
16 |
-
from typing import Union, List
|
17 |
|
18 |
# ββββββββββ Logging ββββββββββ
|
19 |
logging.basicConfig(
|
@@ -27,9 +28,9 @@ logger = logging.getLogger(__name__)
|
|
27 |
# ββββββββββ Model Manager ββββββββββ
|
28 |
class ModelManager:
|
29 |
"""
|
30 |
-
|
31 |
-
using 8-bit
|
32 |
-
Auto-
|
33 |
"""
|
34 |
def __init__(
|
35 |
self,
|
@@ -37,81 +38,75 @@ class ModelManager:
|
|
37 |
quantize: bool = True,
|
38 |
default_tgt: str = None,
|
39 |
):
|
40 |
-
#
|
41 |
if quantize and not torch.cuda.is_available():
|
42 |
logger.warning("CUDA unavailable; disabling 8-bit quantization")
|
43 |
quantize = False
|
44 |
self.quantize = quantize
|
45 |
|
46 |
-
self.candidates
|
47 |
"facebook/nllb-200-distilled-600M",
|
48 |
"facebook/m2m100_418M",
|
49 |
]
|
50 |
-
self.default_tgt
|
51 |
-
|
52 |
-
self.
|
53 |
-
self.
|
54 |
-
self.
|
55 |
-
self.
|
56 |
-
self.lang_codes: List[str] = []
|
57 |
|
58 |
self._select_and_load()
|
59 |
|
60 |
def _select_and_load(self):
|
61 |
last_err = None
|
62 |
-
for
|
63 |
try:
|
64 |
-
#
|
65 |
-
logger.info(f"Loading tokenizer for {
|
66 |
-
tok = AutoTokenizer.from_pretrained(
|
67 |
if not hasattr(tok, "lang_code_to_id"):
|
68 |
-
raise AttributeError(
|
69 |
|
70 |
-
#
|
71 |
-
logger.info(f"Loading model {
|
72 |
if self.quantize:
|
73 |
bnb_cfg = BitsAndBytesConfig(load_in_8bit=True)
|
74 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
75 |
-
|
76 |
device_map="auto",
|
77 |
quantization_config=bnb_cfg,
|
78 |
)
|
79 |
else:
|
80 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
81 |
-
|
82 |
device_map="auto",
|
83 |
)
|
84 |
-
logger.info(f"
|
85 |
-
|
86 |
-
#
|
87 |
-
pipe = pipeline(
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
self.model_name = model_name
|
95 |
-
self.tokenizer = tok
|
96 |
-
self.model = mdl
|
97 |
-
self.pipeline = pipe
|
98 |
self.lang_codes = list(tok.lang_code_to_id.keys())
|
99 |
|
100 |
-
#
|
101 |
if not self.default_tgt:
|
102 |
-
|
103 |
-
if not
|
104 |
-
raise ValueError(
|
105 |
-
self.default_tgt =
|
106 |
-
logger.info(f"
|
107 |
-
|
108 |
return
|
109 |
|
110 |
except Exception as e:
|
111 |
-
logger.warning(f"
|
112 |
last_err = e
|
113 |
|
114 |
-
raise RuntimeError(f"
|
115 |
|
116 |
def translate(
|
117 |
self,
|
@@ -119,43 +114,39 @@ class ModelManager:
|
|
119 |
src_lang: str = None,
|
120 |
tgt_lang: str = None,
|
121 |
):
|
122 |
-
"""
|
123 |
-
Translate `text` from src_lang β tgt_lang.
|
124 |
-
Auto-detects src_lang if not given.
|
125 |
-
"""
|
126 |
tgt = tgt_lang or self.default_tgt
|
127 |
|
128 |
-
#
|
129 |
if not src_lang:
|
130 |
sample = text[0] if isinstance(text, list) else text
|
131 |
try:
|
132 |
iso = detect(sample).lower()
|
133 |
-
|
134 |
-
if not
|
135 |
raise LangDetectException(f"No code for ISO '{iso}'")
|
136 |
-
exact
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
src =
|
|
|
143 |
else:
|
144 |
src = src_lang
|
145 |
|
146 |
return self.pipeline(text, src_lang=src, tgt_lang=tgt)
|
147 |
|
148 |
def get_info(self):
|
149 |
-
|
150 |
-
|
151 |
-
device = "cpu"
|
152 |
if torch.cuda.is_available() and hasattr(self.model, "device"):
|
153 |
-
|
154 |
-
|
155 |
return {
|
156 |
"model": self.model_name,
|
157 |
-
"quantized":
|
158 |
-
"device":
|
159 |
"default_tgt": self.default_tgt,
|
160 |
}
|
161 |
|
@@ -163,17 +154,10 @@ class ModelManager:
|
|
163 |
# ββββββββββ Evaluator ββββββββββ
|
164 |
class TranslationEvaluator:
|
165 |
def __init__(self):
|
166 |
-
self.bleu
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
logger.error("BERTScore load error: %s", e)
|
171 |
-
self.bertscore = None
|
172 |
-
try:
|
173 |
-
self.comet = evaluate.load("comet", model_id="unbabel/comet-mqm-qe-da")
|
174 |
-
except Exception as e:
|
175 |
-
logger.error("COMET load error: %s", e)
|
176 |
-
self.comet = None
|
177 |
|
178 |
def evaluate(
|
179 |
self,
|
@@ -184,69 +168,36 @@ class TranslationEvaluator:
|
|
184 |
results = {}
|
185 |
|
186 |
# BLEU
|
187 |
-
|
188 |
-
|
189 |
-
predictions=predictions,
|
190 |
-
references=[[r] for r in references],
|
191 |
-
)
|
192 |
-
results["BLEU"] = float(bleu_res.get("bleu", 0.0))
|
193 |
-
except Exception as e:
|
194 |
-
logger.error("BLEU compute error: %s", e)
|
195 |
-
results["BLEU"] = 0.0
|
196 |
-
|
197 |
-
# BERTScore (general)
|
198 |
-
if self.bertscore:
|
199 |
-
try:
|
200 |
-
bs = self.bertscore.compute(
|
201 |
-
predictions=predictions, references=references, lang="xx"
|
202 |
-
)
|
203 |
-
f1 = bs.get("f1", [])
|
204 |
-
results["BERTScore"] = float(sum(f1)) / max(len(f1), 1)
|
205 |
-
except Exception as e:
|
206 |
-
logger.error("BERTScore compute error: %s", e)
|
207 |
-
results["BERTScore"] = 0.0
|
208 |
-
else:
|
209 |
-
results["BERTScore"] = 0.0
|
210 |
|
211 |
-
#
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
logger.error("BERTurk compute error: %s", e)
|
221 |
-
results["BERTurk"] = 0.0
|
222 |
-
else:
|
223 |
-
results["BERTurk"] = 0.0
|
224 |
|
225 |
# COMET
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
)
|
231 |
-
sc = cm.get("scores", None)
|
232 |
-
if isinstance(sc, list):
|
233 |
-
results["COMET"] = float(sc[0]) if sc else 0.0
|
234 |
-
else:
|
235 |
-
results["COMET"] = float(sc or 0.0)
|
236 |
-
except Exception as e:
|
237 |
-
logger.error("COMET compute error: %s", e)
|
238 |
-
results["COMET"] = 0.0
|
239 |
else:
|
240 |
-
results["COMET"] = 0.0
|
241 |
|
242 |
return results
|
243 |
|
244 |
|
245 |
# ββββββββββ Streamlit App ββββββββββ
|
|
|
246 |
@st.cache_resource
|
247 |
def load_resources():
|
248 |
mgr = ModelManager(quantize=True)
|
249 |
-
ev
|
250 |
return mgr, ev
|
251 |
|
252 |
|
@@ -265,30 +216,38 @@ def process_text(
|
|
265 |
ev: TranslationEvaluator,
|
266 |
metrics: List[str],
|
267 |
):
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
|
|
|
|
274 |
"hypothesis": hyp,
|
275 |
-
**{m: scores.get(m, 0.0) for m in metrics},
|
276 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
277 |
|
278 |
|
279 |
def show_single_results(res: dict, metrics: List[str]):
|
280 |
left, right = st.columns(2)
|
281 |
with left:
|
282 |
-
st.markdown("**Source:**")
|
283 |
-
st.write(res["
|
284 |
-
st.markdown("**Hypothesis (TR):**")
|
285 |
-
st.write(res["hypothesis"])
|
286 |
if res["reference"]:
|
287 |
-
st.markdown("**Reference (TR):**")
|
288 |
-
st.write(res["reference"])
|
289 |
with right:
|
290 |
st.markdown("### Scores")
|
291 |
df = pd.DataFrame([{m: res[m] for m in metrics}])
|
|
|
292 |
st.table(df)
|
293 |
|
294 |
|
@@ -305,24 +264,35 @@ def process_file(
|
|
305 |
prog = st.progress(0)
|
306 |
results = []
|
307 |
total = len(df)
|
|
|
308 |
for i in range(0, total, batch_size):
|
309 |
batch = df.iloc[i : i + batch_size]
|
310 |
-
srcs = batch["src"].tolist()
|
311 |
-
refs = batch["ref_tr"].tolist()
|
312 |
outs = mgr.translate(srcs)
|
313 |
hyps = [o["translation_text"] for o in outs]
|
|
|
314 |
for s, r, h in zip(srcs, refs, hyps):
|
315 |
-
sc = ev.evaluate([s], [r], [h])
|
316 |
entry = {"src": s, "ref_tr": r, "hyp_tr": h}
|
317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
results.append(entry)
|
|
|
319 |
prog.progress(min(i + batch_size, total) / total)
|
|
|
320 |
return pd.DataFrame(results)
|
321 |
|
322 |
|
323 |
def show_batch_viz(df: pd.DataFrame, metrics: List[str]):
|
324 |
for m in metrics:
|
325 |
st.markdown(f"#### {m} Distribution")
|
|
|
|
|
|
|
326 |
fig = px.histogram(df, x=m)
|
327 |
st.plotly_chart(fig, use_container_width=True)
|
328 |
|
@@ -330,20 +300,18 @@ def show_batch_viz(df: pd.DataFrame, metrics: List[str]):
|
|
330 |
def main():
|
331 |
st.set_page_config(page_title="π€ TranslationβTurkish Quality", layout="wide")
|
332 |
st.title("π€ Translation β TR Quality & COMET")
|
333 |
-
st.markdown(
|
334 |
-
"Translate any language into Turkish and evaluate with BLEU, BERTScore, BERTurk & COMET."
|
335 |
-
)
|
336 |
|
337 |
# Sidebar
|
338 |
with st.sidebar:
|
339 |
st.header("Settings")
|
340 |
-
metrics
|
341 |
-
"Select metrics",
|
342 |
["BLEU", "BERTScore", "BERTurk", "COMET"],
|
343 |
-
default=["BLEU", "BERTScore", "COMET"]
|
344 |
)
|
345 |
batch_size = st.slider("Batch size", 1, 32, 8)
|
346 |
-
mgr, ev
|
347 |
display_model_info(mgr.get_info())
|
348 |
|
349 |
# Tabs
|
@@ -358,16 +326,14 @@ def main():
|
|
358 |
show_single_results(res, metrics)
|
359 |
|
360 |
with tab2:
|
361 |
-
uploaded = st.file_uploader(
|
362 |
-
"Upload CSV with `src` & `ref_tr` columns", type=["csv"]
|
363 |
-
)
|
364 |
if uploaded:
|
365 |
with st.spinner("Processing fileβ¦"):
|
366 |
df_res = process_file(uploaded, mgr, ev, metrics, batch_size)
|
367 |
st.markdown("### Batch Results")
|
368 |
st.dataframe(df_res, use_container_width=True)
|
369 |
show_batch_viz(df_res, metrics)
|
370 |
-
st.download_button("Download CSV", df_res.to_csv(index=False), "results.csv")
|
371 |
|
372 |
|
373 |
if __name__ == "__main__":
|
|
|
5 |
import torch
|
6 |
import pandas as pd
|
7 |
import plotly.express as px
|
8 |
+
from typing import Union, List
|
9 |
+
|
10 |
+
from langdetect import detect, LangDetectException
|
11 |
from transformers import (
|
12 |
AutoTokenizer,
|
13 |
AutoModelForSeq2SeqLM,
|
14 |
pipeline,
|
15 |
BitsAndBytesConfig,
|
16 |
)
|
|
|
17 |
import evaluate
|
|
|
18 |
|
19 |
# ββββββββββ Logging ββββββββββ
|
20 |
logging.basicConfig(
|
|
|
28 |
# ββββββββββ Model Manager ββββββββββ
|
29 |
class ModelManager:
|
30 |
"""
|
31 |
+
Select & load the best translation model from a candidate list,
|
32 |
+
using 8-bit quant if CUDA is available, else full-precision.
|
33 |
+
Auto-picks Turkish target code.
|
34 |
"""
|
35 |
def __init__(
|
36 |
self,
|
|
|
38 |
quantize: bool = True,
|
39 |
default_tgt: str = None,
|
40 |
):
|
41 |
+
# disable 8-bit if no GPU
|
42 |
if quantize and not torch.cuda.is_available():
|
43 |
logger.warning("CUDA unavailable; disabling 8-bit quantization")
|
44 |
quantize = False
|
45 |
self.quantize = quantize
|
46 |
|
47 |
+
self.candidates = candidates or [
|
48 |
"facebook/nllb-200-distilled-600M",
|
49 |
"facebook/m2m100_418M",
|
50 |
]
|
51 |
+
self.default_tgt = default_tgt # will auto-pick if None
|
52 |
+
self.model_name = None
|
53 |
+
self.tokenizer = None
|
54 |
+
self.model = None
|
55 |
+
self.pipeline = None
|
56 |
+
self.lang_codes = []
|
|
|
57 |
|
58 |
self._select_and_load()
|
59 |
|
60 |
def _select_and_load(self):
|
61 |
last_err = None
|
62 |
+
for name in self.candidates:
|
63 |
try:
|
64 |
+
# 1) tokenizer
|
65 |
+
logger.info(f"Loading tokenizer for {name}")
|
66 |
+
tok = AutoTokenizer.from_pretrained(name, use_fast=True)
|
67 |
if not hasattr(tok, "lang_code_to_id"):
|
68 |
+
raise AttributeError("no lang_code_to_id on tokenizer")
|
69 |
|
70 |
+
# 2) model
|
71 |
+
logger.info(f"Loading model {name} (8-bit={self.quantize})")
|
72 |
if self.quantize:
|
73 |
bnb_cfg = BitsAndBytesConfig(load_in_8bit=True)
|
74 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
75 |
+
name,
|
76 |
device_map="auto",
|
77 |
quantization_config=bnb_cfg,
|
78 |
)
|
79 |
else:
|
80 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
81 |
+
name,
|
82 |
device_map="auto",
|
83 |
)
|
84 |
+
logger.info(f"Loaded {name}")
|
85 |
+
|
86 |
+
# 3) pipeline
|
87 |
+
pipe = pipeline("translation", model=mdl, tokenizer=tok)
|
88 |
+
|
89 |
+
# store
|
90 |
+
self.model_name = name
|
91 |
+
self.tokenizer = tok
|
92 |
+
self.model = mdl
|
93 |
+
self.pipeline = pipe
|
|
|
|
|
|
|
|
|
94 |
self.lang_codes = list(tok.lang_code_to_id.keys())
|
95 |
|
96 |
+
# pick Turkish code if needed
|
97 |
if not self.default_tgt:
|
98 |
+
tur = [c for c in self.lang_codes if c.lower().startswith("tr")]
|
99 |
+
if not tur:
|
100 |
+
raise ValueError("No Turkish code available")
|
101 |
+
self.default_tgt = tur[0]
|
102 |
+
logger.info(f"default_tgt = {self.default_tgt}")
|
|
|
103 |
return
|
104 |
|
105 |
except Exception as e:
|
106 |
+
logger.warning(f"failed to load {name}: {e}")
|
107 |
last_err = e
|
108 |
|
109 |
+
raise RuntimeError(f"no model loaded: {last_err}")
|
110 |
|
111 |
def translate(
|
112 |
self,
|
|
|
114 |
src_lang: str = None,
|
115 |
tgt_lang: str = None,
|
116 |
):
|
|
|
|
|
|
|
|
|
117 |
tgt = tgt_lang or self.default_tgt
|
118 |
|
119 |
+
# auto-detect source
|
120 |
if not src_lang:
|
121 |
sample = text[0] if isinstance(text, list) else text
|
122 |
try:
|
123 |
iso = detect(sample).lower()
|
124 |
+
cand = [c for c in self.lang_codes if c.lower().startswith(iso)]
|
125 |
+
if not cand:
|
126 |
raise LangDetectException(f"No code for ISO '{iso}'")
|
127 |
+
# exact or first
|
128 |
+
exact = [c for c in cand if c.lower() == iso]
|
129 |
+
src = exact[0] if exact else cand[0]
|
130 |
+
logger.info(f"src_lang = {src}")
|
131 |
+
except Exception:
|
132 |
+
eng = [c for c in self.lang_codes if c.lower().startswith("en")]
|
133 |
+
src = eng[0] if eng else self.lang_codes[0]
|
134 |
+
logger.warning(f"defaulting src_lang = {src}")
|
135 |
else:
|
136 |
src = src_lang
|
137 |
|
138 |
return self.pipeline(text, src_lang=src, tgt_lang=tgt)
|
139 |
|
140 |
def get_info(self):
|
141 |
+
# figure out device for display
|
142 |
+
dev = "cpu"
|
|
|
143 |
if torch.cuda.is_available() and hasattr(self.model, "device"):
|
144 |
+
d = self.model.device
|
145 |
+
dev = str(d) if isinstance(d, torch.device) else f"cuda:{getattr(d,'index','')}"
|
146 |
return {
|
147 |
"model": self.model_name,
|
148 |
+
"quantized": self.quantize,
|
149 |
+
"device": dev,
|
150 |
"default_tgt": self.default_tgt,
|
151 |
}
|
152 |
|
|
|
154 |
# ββββββββββ Evaluator ββββββββββ
|
155 |
class TranslationEvaluator:
|
156 |
def __init__(self):
|
157 |
+
self.bleu = evaluate.load("bleu")
|
158 |
+
self.bertscore = evaluate.load("bertscore")
|
159 |
+
self.comet = evaluate.load("comet", model_id="unbabel/wmt22-comet-da")
|
160 |
+
logger.info("Loaded BLEU, BERTScore, COMET")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
def evaluate(
|
163 |
self,
|
|
|
168 |
results = {}
|
169 |
|
170 |
# BLEU
|
171 |
+
bleu_r = self.bleu.compute(predictions=predictions, references=[[r] for r in references])
|
172 |
+
results["BLEU"] = float(bleu_r.get("bleu", 0.0))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
+
# BERTScore (xx)
|
175 |
+
bs = self.bertscore.compute(predictions=predictions, references=references, lang="xx")
|
176 |
+
f1 = bs.get("f1", [])
|
177 |
+
results["BERTScore"] = float(sum(f1) / len(f1)) if f1 else 0.0
|
178 |
+
|
179 |
+
# BERTurk (tr)
|
180 |
+
bs_tr = self.bertscore.compute(predictions=predictions, references=references, lang="tr")
|
181 |
+
f1t = bs_tr.get("f1", [])
|
182 |
+
results["BERTurk"] = float(sum(f1t) / len(f1t)) if f1t else 0.0
|
|
|
|
|
|
|
|
|
183 |
|
184 |
# COMET
|
185 |
+
cm = self.comet.compute(srcs=sources, hyps=predictions, refs=references)
|
186 |
+
sc = cm.get("scores", None)
|
187 |
+
if isinstance(sc, list):
|
188 |
+
results["COMET"] = float(sc[0]) if sc else 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
else:
|
190 |
+
results["COMET"] = float(sc or 0.0)
|
191 |
|
192 |
return results
|
193 |
|
194 |
|
195 |
# ββββββββββ Streamlit App ββββββββββ
|
196 |
+
|
197 |
@st.cache_resource
|
198 |
def load_resources():
|
199 |
mgr = ModelManager(quantize=True)
|
200 |
+
ev = TranslationEvaluator()
|
201 |
return mgr, ev
|
202 |
|
203 |
|
|
|
216 |
ev: TranslationEvaluator,
|
217 |
metrics: List[str],
|
218 |
):
|
219 |
+
# 1) translate
|
220 |
+
out = mgr.translate(src) # list of dicts
|
221 |
+
hyp = out[0]["translation_text"]
|
222 |
+
|
223 |
+
# 2) if we have a non-blank reference β compute metrics; else all Nones
|
224 |
+
result = {
|
225 |
+
"source": src,
|
226 |
+
"reference": ref or None,
|
227 |
"hypothesis": hyp,
|
|
|
228 |
}
|
229 |
+
if ref and ref.strip():
|
230 |
+
scores = ev.evaluate([src], [ref], [hyp])
|
231 |
+
for m in metrics:
|
232 |
+
result[m] = scores.get(m, 0.0)
|
233 |
+
else:
|
234 |
+
for m in metrics:
|
235 |
+
result[m] = None
|
236 |
+
|
237 |
+
return result
|
238 |
|
239 |
|
240 |
def show_single_results(res: dict, metrics: List[str]):
|
241 |
left, right = st.columns(2)
|
242 |
with left:
|
243 |
+
st.markdown("**Source:**"); st.write(res["source"])
|
244 |
+
st.markdown("**Hypothesis (TR):**"); st.write(res["hypothesis"])
|
|
|
|
|
245 |
if res["reference"]:
|
246 |
+
st.markdown("**Reference (TR):**"); st.write(res["reference"])
|
|
|
247 |
with right:
|
248 |
st.markdown("### Scores")
|
249 |
df = pd.DataFrame([{m: res[m] for m in metrics}])
|
250 |
+
df = df.replace({None: "N/A"})
|
251 |
st.table(df)
|
252 |
|
253 |
|
|
|
264 |
prog = st.progress(0)
|
265 |
results = []
|
266 |
total = len(df)
|
267 |
+
|
268 |
for i in range(0, total, batch_size):
|
269 |
batch = df.iloc[i : i + batch_size]
|
270 |
+
srcs, refs = batch["src"].tolist(), batch["ref_tr"].tolist()
|
|
|
271 |
outs = mgr.translate(srcs)
|
272 |
hyps = [o["translation_text"] for o in outs]
|
273 |
+
|
274 |
for s, r, h in zip(srcs, refs, hyps):
|
|
|
275 |
entry = {"src": s, "ref_tr": r, "hyp_tr": h}
|
276 |
+
if r and str(r).strip():
|
277 |
+
sc = ev.evaluate([s], [r], [h])
|
278 |
+
for m in metrics:
|
279 |
+
entry[m] = sc.get(m, 0.0)
|
280 |
+
else:
|
281 |
+
for m in metrics:
|
282 |
+
entry[m] = None
|
283 |
results.append(entry)
|
284 |
+
|
285 |
prog.progress(min(i + batch_size, total) / total)
|
286 |
+
|
287 |
return pd.DataFrame(results)
|
288 |
|
289 |
|
290 |
def show_batch_viz(df: pd.DataFrame, metrics: List[str]):
|
291 |
for m in metrics:
|
292 |
st.markdown(f"#### {m} Distribution")
|
293 |
+
if df[m].dropna().empty:
|
294 |
+
st.write("No reference provided, so this metric is N/A.")
|
295 |
+
continue
|
296 |
fig = px.histogram(df, x=m)
|
297 |
st.plotly_chart(fig, use_container_width=True)
|
298 |
|
|
|
300 |
def main():
|
301 |
st.set_page_config(page_title="π€ TranslationβTurkish Quality", layout="wide")
|
302 |
st.title("π€ Translation β TR Quality & COMET")
|
303 |
+
st.markdown("Translate any language into Turkish and evaluate (optional) with BLEU, BERTScore, BERTurk & COMET.")
|
|
|
|
|
304 |
|
305 |
# Sidebar
|
306 |
with st.sidebar:
|
307 |
st.header("Settings")
|
308 |
+
metrics = st.multiselect(
|
309 |
+
"Select metrics",
|
310 |
["BLEU", "BERTScore", "BERTurk", "COMET"],
|
311 |
+
default=["BLEU", "BERTScore", "COMET"]
|
312 |
)
|
313 |
batch_size = st.slider("Batch size", 1, 32, 8)
|
314 |
+
mgr, ev = load_resources()
|
315 |
display_model_info(mgr.get_info())
|
316 |
|
317 |
# Tabs
|
|
|
326 |
show_single_results(res, metrics)
|
327 |
|
328 |
with tab2:
|
329 |
+
uploaded = st.file_uploader("Upload CSV with `src` & `ref_tr` columns", type=["csv"])
|
|
|
|
|
330 |
if uploaded:
|
331 |
with st.spinner("Processing fileβ¦"):
|
332 |
df_res = process_file(uploaded, mgr, ev, metrics, batch_size)
|
333 |
st.markdown("### Batch Results")
|
334 |
st.dataframe(df_res, use_container_width=True)
|
335 |
show_batch_viz(df_res, metrics)
|
336 |
+
st.download_button("Download results as CSV", df_res.to_csv(index=False), "results.csv")
|
337 |
|
338 |
|
339 |
if __name__ == "__main__":
|