Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,12 +4,14 @@ import streamlit as st
|
|
4 |
import streamlit.components.v1 as components
|
5 |
import logging
|
6 |
import torch
|
|
|
|
|
7 |
import pandas as pd
|
8 |
import plotly.express as px
|
9 |
import time
|
10 |
import difflib
|
11 |
-
from typing import Union, List
|
12 |
|
|
|
13 |
from langdetect import detect, LangDetectException
|
14 |
from transformers import (
|
15 |
AutoTokenizer,
|
@@ -18,73 +20,73 @@ from transformers import (
|
|
18 |
BitsAndBytesConfig,
|
19 |
)
|
20 |
import evaluate
|
|
|
21 |
|
22 |
# ββββββββββ Global CSS ββββββββββ
|
23 |
-
st.markdown(
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
textarea { border-radius: 4px; }
|
33 |
-
/* Tables */
|
34 |
-
.stTable table { border-radius: 4px; overflow: hidden; }
|
35 |
-
</style>
|
36 |
-
""",
|
37 |
-
unsafe_allow_html=True
|
38 |
-
)
|
39 |
|
40 |
# ββββββββββ Logging ββββββββββ
|
41 |
logging.basicConfig(
|
42 |
format="%(asctime)s %(levelname)s %(name)s: %(message)s",
|
43 |
datefmt="%Y-%m-%d %H:%M:%S",
|
44 |
-
level=logging.INFO
|
45 |
)
|
46 |
logger = logging.getLogger(__name__)
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
# ββββββββββ Model Manager ββββββββββ
|
50 |
class ModelManager:
|
51 |
"""
|
52 |
-
|
53 |
-
|
54 |
"""
|
55 |
-
def __init__(
|
56 |
-
self,
|
57 |
-
candidates: List[str] = None,
|
58 |
-
quantize: bool = True,
|
59 |
-
default_tgt: str = None,
|
60 |
-
):
|
61 |
if quantize and not torch.cuda.is_available():
|
62 |
logger.warning("CUDA unavailable; disabling 8-bit quantization")
|
63 |
quantize = False
|
64 |
-
self.quantize
|
65 |
-
self.candidates
|
66 |
"facebook/nllb-200-distilled-600M",
|
67 |
-
"facebook/m2m100_418M"
|
68 |
]
|
69 |
self.default_tgt = default_tgt
|
70 |
-
self.model_name = None
|
71 |
-
self.tokenizer = None
|
72 |
-
self.model = None
|
73 |
-
self.pipeline = None
|
74 |
-
self.lang_codes = []
|
75 |
self._load_best()
|
76 |
|
77 |
def _load_best(self):
|
78 |
last_err = None
|
79 |
for name in self.candidates:
|
80 |
try:
|
81 |
-
# 1) Tokenizer
|
82 |
-
logger.info(f"Loading tokenizer for {name}")
|
83 |
tok = AutoTokenizer.from_pretrained(name, use_fast=True)
|
84 |
if not hasattr(tok, "lang_code_to_id"):
|
85 |
raise AttributeError("no lang_code_to_id")
|
86 |
-
|
87 |
-
logger.info(f"Loading model {name} (8-bit={self.quantize})")
|
88 |
if self.quantize:
|
89 |
bnb = BitsAndBytesConfig(load_in_8bit=True)
|
90 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
@@ -94,21 +96,19 @@ class ModelManager:
|
|
94 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
95 |
name, device_map="auto"
|
96 |
)
|
97 |
-
# 3) Pipeline
|
98 |
pipe = pipeline("translation", model=mdl, tokenizer=tok)
|
99 |
-
# Store
|
100 |
self.model_name = name
|
101 |
self.tokenizer = tok
|
102 |
self.model = mdl
|
103 |
self.pipeline = pipe
|
104 |
self.lang_codes = list(tok.lang_code_to_id.keys())
|
105 |
-
#
|
106 |
if not self.default_tgt:
|
107 |
tur = [c for c in self.lang_codes if c.lower().startswith("tr")]
|
108 |
if not tur:
|
109 |
raise ValueError("No Turkish code found")
|
110 |
self.default_tgt = tur[0]
|
111 |
-
logger.info(f"
|
112 |
return
|
113 |
except Exception as e:
|
114 |
logger.warning(f"Failed to load {name}: {e}")
|
@@ -116,30 +116,26 @@ class ModelManager:
|
|
116 |
raise RuntimeError(f"No model loaded: {last_err}")
|
117 |
|
118 |
def translate(
|
119 |
-
self,
|
120 |
-
|
121 |
-
src_lang: str = None,
|
122 |
-
tgt_lang: str = None,
|
123 |
):
|
124 |
tgt = tgt_lang or self.default_tgt
|
125 |
-
# auto
|
126 |
if not src_lang:
|
127 |
sample = text[0] if isinstance(text, list) else text
|
128 |
try:
|
129 |
iso = detect(sample).lower()
|
130 |
-
|
131 |
-
if not
|
132 |
-
exact = [c for c in
|
133 |
-
src = exact[0] if exact else
|
134 |
logger.info(f"Detected src_lang={src}")
|
135 |
except Exception:
|
136 |
-
# fallback to English
|
137 |
eng = [c for c in self.lang_codes if c.lower().startswith("en")]
|
138 |
src = eng[0] if eng else self.lang_codes[0]
|
139 |
logger.warning(f"Falling back src_lang={src}")
|
140 |
else:
|
141 |
src = src_lang
|
142 |
-
|
143 |
return self.pipeline(text, src_lang=src, tgt_lang=tgt)
|
144 |
|
145 |
def get_info(self):
|
@@ -152,79 +148,185 @@ class ModelManager:
|
|
152 |
"quantized": self.quantize,
|
153 |
"device": dev,
|
154 |
"default_tgt": self.default_tgt,
|
|
|
155 |
}
|
156 |
|
157 |
-
|
158 |
# ββββββββββ Evaluator ββββββββββ
|
159 |
class TranslationEvaluator:
|
|
|
|
|
|
|
160 |
def __init__(self):
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
self.bertscore = evaluate.load("bertscore")
|
163 |
-
|
164 |
-
|
|
|
|
|
|
|
165 |
|
166 |
-
def
|
167 |
self,
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
172 |
out = {}
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
return out
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
|
191 |
# ββββββββββ Streamlit App ββββββββββ
|
192 |
@st.cache_resource
|
193 |
def load_resources():
|
194 |
mgr = ModelManager(quantize=True)
|
195 |
ev = TranslationEvaluator()
|
196 |
-
|
197 |
-
|
|
|
198 |
|
199 |
def display_model_info(info: dict):
|
200 |
st.sidebar.markdown("### Model Info")
|
201 |
-
st.sidebar.write(f"β’ Model
|
202 |
-
st.sidebar.write(f"β’ Quantized
|
203 |
-
st.sidebar.write(f"β’ Device
|
204 |
-
|
205 |
|
206 |
-
def
|
207 |
-
# 1) call pipeline
|
208 |
-
out = mgr.translate(src, tgt_lang=tgt)
|
209 |
-
hyp = out[0]["translation_text"]
|
210 |
-
|
211 |
-
# 2) pseudoβstream: reveal word by word
|
212 |
-
placeholder = st.empty()
|
213 |
-
text_acc = ""
|
214 |
-
for w in hyp.split():
|
215 |
-
text_acc += w + " "
|
216 |
-
placeholder.markdown(f"**Hypothesis ({tgt}):** {text_acc}")
|
217 |
-
time.sleep(0.05)
|
218 |
-
|
219 |
-
# 3) metrics (only if ref given)
|
220 |
-
scores = {}
|
221 |
-
if ref and ref.strip():
|
222 |
-
scores = ev.evaluate([src], [ref], [hyp])
|
223 |
-
return hyp, scores
|
224 |
-
|
225 |
-
|
226 |
-
def show_diff(ref, hyp):
|
227 |
-
# sideβbyβside HTML diff
|
228 |
differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=60)
|
229 |
html = differ.make_table(
|
230 |
ref.split(), hyp.split(),
|
@@ -233,84 +335,115 @@ def show_diff(ref, hyp):
|
|
233 |
)
|
234 |
components.html(html, height=200, scrolling=True)
|
235 |
|
236 |
-
|
237 |
def main():
|
238 |
-
st.set_page_config(page_title="π€
|
239 |
-
st.title("π Translate β π
|
240 |
-
st.write("
|
241 |
|
242 |
-
# Sidebar
|
243 |
with st.sidebar:
|
244 |
st.header("Settings")
|
245 |
-
mgr, ev = load_resources()
|
246 |
info = mgr.get_info()
|
247 |
display_model_info(info)
|
248 |
|
249 |
tgt = st.selectbox(
|
250 |
-
"Target language
|
251 |
-
|
252 |
-
index=mgr.lang_codes.index(info["default_tgt"])
|
253 |
-
)
|
254 |
-
metrics = st.multiselect(
|
255 |
-
"Metrics",
|
256 |
-
["BLEU","BERTScore","BERTurk","COMET"],
|
257 |
-
default=["BLEU","BERTScore","COMET"]
|
258 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
259 |
batch_size = st.slider("Batch size", 1, 32, 8)
|
260 |
|
261 |
-
tab1, tab2 = st.tabs(["Single
|
262 |
|
|
|
263 |
with tab1:
|
264 |
-
src = st.text_area("Source
|
265 |
-
ref = st.text_area("
|
266 |
if st.button("Translate & Eval"):
|
267 |
-
with st.spinner("
|
268 |
-
|
269 |
-
|
270 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
st.markdown("### Scores")
|
272 |
-
st.table(pd.DataFrame([
|
|
|
273 |
# diff
|
274 |
if ref.strip():
|
275 |
-
st.markdown("### Diff
|
276 |
show_diff(ref, hyp)
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
with tab2:
|
279 |
uploaded = st.file_uploader("Upload CSV with `src`,`ref_tr`", type=["csv"])
|
280 |
if uploaded:
|
281 |
df = pd.read_csv(uploaded)
|
282 |
-
if not {"src","ref_tr"}.issubset(df):
|
283 |
-
st.error("CSV
|
284 |
else:
|
285 |
-
with st.spinner("Batch
|
286 |
-
|
287 |
prog = st.progress(0)
|
288 |
-
|
|
|
289 |
batch = df.iloc[i : i+batch_size]
|
290 |
srcs, refs = batch["src"].tolist(), batch["ref_tr"].tolist()
|
291 |
outs = mgr.translate(srcs, tgt_lang=tgt)
|
292 |
hyps = [o["translation_text"] for o in outs]
|
293 |
for s, r, h in zip(srcs, refs, hyps):
|
294 |
-
|
295 |
if r.strip():
|
296 |
-
sc = ev.
|
297 |
-
for m in metrics:
|
|
|
|
|
|
|
|
|
|
|
298 |
else:
|
299 |
-
for m in metrics:
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
|
|
|
|
304 |
st.dataframe(res_df, use_container_width=True)
|
305 |
-
|
|
|
306 |
for m in metrics:
|
307 |
-
st.markdown(f"#### {m}
|
308 |
-
col = res_df[m].dropna()
|
309 |
if col.empty:
|
310 |
-
st.write("No valid
|
311 |
else:
|
312 |
-
fig = px.histogram(
|
313 |
st.plotly_chart(fig, use_container_width=True)
|
|
|
314 |
st.download_button("Download CSV", res_df.to_csv(index=False), "results.csv")
|
315 |
|
316 |
if __name__=="__main__":
|
|
|
4 |
import streamlit.components.v1 as components
|
5 |
import logging
|
6 |
import torch
|
7 |
+
import random
|
8 |
+
import numpy as np
|
9 |
import pandas as pd
|
10 |
import plotly.express as px
|
11 |
import time
|
12 |
import difflib
|
|
|
13 |
|
14 |
+
from typing import List, Union
|
15 |
from langdetect import detect, LangDetectException
|
16 |
from transformers import (
|
17 |
AutoTokenizer,
|
|
|
20 |
BitsAndBytesConfig,
|
21 |
)
|
22 |
import evaluate
|
23 |
+
from sacrebleu import corpus_bleu, sentence_bleu # Doc vs. segment BLEU
|
24 |
|
25 |
# ββββββββββ Global CSS ββββββββββ
|
26 |
+
st.markdown("""
|
27 |
+
<style>
|
28 |
+
.main .block-container { max-width: 900px; padding: 1rem 2rem; }
|
29 |
+
.stButton>button { background-color: #4A90E2; color: white; border-radius: 4px; }
|
30 |
+
.stButton>button:hover { background-color: #357ABD; }
|
31 |
+
textarea { border-radius: 4px; }
|
32 |
+
.stTable table { border-radius: 4px; overflow: hidden; }
|
33 |
+
</style>
|
34 |
+
""", unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
# ββββββββββ Logging ββββββββββ
|
37 |
logging.basicConfig(
|
38 |
format="%(asctime)s %(levelname)s %(name)s: %(message)s",
|
39 |
datefmt="%Y-%m-%d %H:%M:%S",
|
40 |
+
level=logging.INFO,
|
41 |
)
|
42 |
logger = logging.getLogger(__name__)
|
43 |
|
44 |
+
# ββββββββββ Utilities ββββββββββ
|
45 |
+
def bootstrap(
|
46 |
+
fn, predictions: List[str], references: List[str], sources: List[str]=None,
|
47 |
+
n_resamples: int = 200, seed: int = 42
|
48 |
+
) -> List[float]:
|
49 |
+
"""Bootstrap metric fn over (predictions, references, [sources])."""
|
50 |
+
random.seed(seed)
|
51 |
+
scores = []
|
52 |
+
N = len(predictions)
|
53 |
+
for _ in range(n_resamples):
|
54 |
+
idxs = [random.randrange(N) for _ in range(N)]
|
55 |
+
ps = [predictions[i] for i in idxs]
|
56 |
+
rs = [references[i] for i in idxs]
|
57 |
+
if sources:
|
58 |
+
ss = [sources[i] for i in idxs]
|
59 |
+
scores.append(fn(ps, rs, ss))
|
60 |
+
else:
|
61 |
+
scores.append(fn(ps, rs))
|
62 |
+
return scores
|
63 |
|
64 |
# ββββββββββ Model Manager ββββββββββ
|
65 |
class ModelManager:
|
66 |
"""
|
67 |
+
Loads the best translation model (NLLBβ200 or M2M100),
|
68 |
+
8-bit if GPU available; auto-detects src_lang; dynamic tgt_lang.
|
69 |
"""
|
70 |
+
def __init__(self, candidates=None, quantize=True, default_tgt=None):
|
|
|
|
|
|
|
|
|
|
|
71 |
if quantize and not torch.cuda.is_available():
|
72 |
logger.warning("CUDA unavailable; disabling 8-bit quantization")
|
73 |
quantize = False
|
74 |
+
self.quantize = quantize
|
75 |
+
self.candidates = candidates or [
|
76 |
"facebook/nllb-200-distilled-600M",
|
77 |
+
"facebook/m2m100_418M",
|
78 |
]
|
79 |
self.default_tgt = default_tgt
|
|
|
|
|
|
|
|
|
|
|
80 |
self._load_best()
|
81 |
|
82 |
def _load_best(self):
|
83 |
last_err = None
|
84 |
for name in self.candidates:
|
85 |
try:
|
|
|
|
|
86 |
tok = AutoTokenizer.from_pretrained(name, use_fast=True)
|
87 |
if not hasattr(tok, "lang_code_to_id"):
|
88 |
raise AttributeError("no lang_code_to_id")
|
89 |
+
logger.info(f"Loading {name} (8-bit={self.quantize})")
|
|
|
90 |
if self.quantize:
|
91 |
bnb = BitsAndBytesConfig(load_in_8bit=True)
|
92 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
|
|
96 |
mdl = AutoModelForSeq2SeqLM.from_pretrained(
|
97 |
name, device_map="auto"
|
98 |
)
|
|
|
99 |
pipe = pipeline("translation", model=mdl, tokenizer=tok)
|
|
|
100 |
self.model_name = name
|
101 |
self.tokenizer = tok
|
102 |
self.model = mdl
|
103 |
self.pipeline = pipe
|
104 |
self.lang_codes = list(tok.lang_code_to_id.keys())
|
105 |
+
# pick default target if none
|
106 |
if not self.default_tgt:
|
107 |
tur = [c for c in self.lang_codes if c.lower().startswith("tr")]
|
108 |
if not tur:
|
109 |
raise ValueError("No Turkish code found")
|
110 |
self.default_tgt = tur[0]
|
111 |
+
logger.info(f"default_tgt = {self.default_tgt}")
|
112 |
return
|
113 |
except Exception as e:
|
114 |
logger.warning(f"Failed to load {name}: {e}")
|
|
|
116 |
raise RuntimeError(f"No model loaded: {last_err}")
|
117 |
|
118 |
def translate(
|
119 |
+
self, text: Union[str, List[str]],
|
120 |
+
src_lang: str = None, tgt_lang: str = None
|
|
|
|
|
121 |
):
|
122 |
tgt = tgt_lang or self.default_tgt
|
123 |
+
# auto-detect src
|
124 |
if not src_lang:
|
125 |
sample = text[0] if isinstance(text, list) else text
|
126 |
try:
|
127 |
iso = detect(sample).lower()
|
128 |
+
cand = [c for c in self.lang_codes if c.lower().startswith(iso)]
|
129 |
+
if not cand: raise LangDetectException()
|
130 |
+
exact = [c for c in cand if c.lower()==iso]
|
131 |
+
src = exact[0] if exact else cand[0]
|
132 |
logger.info(f"Detected src_lang={src}")
|
133 |
except Exception:
|
|
|
134 |
eng = [c for c in self.lang_codes if c.lower().startswith("en")]
|
135 |
src = eng[0] if eng else self.lang_codes[0]
|
136 |
logger.warning(f"Falling back src_lang={src}")
|
137 |
else:
|
138 |
src = src_lang
|
|
|
139 |
return self.pipeline(text, src_lang=src, tgt_lang=tgt)
|
140 |
|
141 |
def get_info(self):
|
|
|
148 |
"quantized": self.quantize,
|
149 |
"device": dev,
|
150 |
"default_tgt": self.default_tgt,
|
151 |
+
"langs": self.lang_codes,
|
152 |
}
|
153 |
|
|
|
154 |
# ββββββββββ Evaluator ββββββββββ
|
155 |
class TranslationEvaluator:
|
156 |
+
"""
|
157 |
+
Wraps BLEU (corpus), ChrF, TER, BERTScore, COMET (ref & ref-free), and provides CIs.
|
158 |
+
"""
|
159 |
def __init__(self):
|
160 |
+
# BLEU (corpus)
|
161 |
+
self.bleu = evaluate.load("bleu")
|
162 |
+
# ChrF :contentReference[oaicite:0]{index=0}
|
163 |
+
self.chrf = evaluate.load("chrf")
|
164 |
+
# TER :contentReference[oaicite:1]{index=1}
|
165 |
+
self.ter = evaluate.load("ter")
|
166 |
+
# BERTScore
|
167 |
self.bertscore = evaluate.load("bertscore")
|
168 |
+
# COMET (ref-based)
|
169 |
+
self.comet_ref = evaluate.load("comet", model_id="unbabel/comet-mqm-qe-da")
|
170 |
+
# COMET QE (ref-free) :contentReference[oaicite:2]{index=2}
|
171 |
+
self.comet_qe = evaluate.load("comet", model_id="unbabel/wmt20-comet-qe-da")
|
172 |
+
logger.info("Loaded BLEU, ChrF, TER, BERTScore, COMET (ref & QE)")
|
173 |
|
174 |
+
def compute_metrics(
|
175 |
self,
|
176 |
+
sources: List[str],
|
177 |
+
references: List[str],
|
178 |
+
predictions: List[str],
|
179 |
+
metrics: List[str],
|
180 |
+
ci: bool = True
|
181 |
+
) -> dict:
|
182 |
out = {}
|
183 |
+
|
184 |
+
# -- BLEU (document-level)
|
185 |
+
if "BLEU_doc" in metrics:
|
186 |
+
doc_bleu = self.bleu.compute(
|
187 |
+
predictions=predictions,
|
188 |
+
references=[[r] for r in references]
|
189 |
+
)["bleu"]
|
190 |
+
out["BLEU_doc"] = float(doc_bleu)
|
191 |
+
|
192 |
+
# -- BLEU (segment-level avg)
|
193 |
+
if "BLEU_seg" in metrics:
|
194 |
+
seg_scores = [
|
195 |
+
sentence_bleu([r], p).score
|
196 |
+
for p, r in zip(predictions, references)
|
197 |
+
]
|
198 |
+
out["BLEU_seg"] = float(sum(seg_scores) / len(seg_scores))
|
199 |
+
|
200 |
+
# -- ChrF
|
201 |
+
if "ChrF" in metrics:
|
202 |
+
cf = self.chrf.compute(
|
203 |
+
predictions=predictions,
|
204 |
+
references=[[r] for r in references]
|
205 |
+
)["score"]
|
206 |
+
out["ChrF"] = float(cf)
|
207 |
+
|
208 |
+
# -- TER
|
209 |
+
if "TER" in metrics:
|
210 |
+
tr = self.ter.compute(
|
211 |
+
predictions=predictions,
|
212 |
+
references=[[r] for r in references],
|
213 |
+
normalized=True
|
214 |
+
)["score"]
|
215 |
+
out["TER"] = float(tr)
|
216 |
+
|
217 |
+
# -- BERTScore
|
218 |
+
if "BERTScore" in metrics:
|
219 |
+
bs = self.bertscore.compute(
|
220 |
+
predictions=predictions,
|
221 |
+
references=references,
|
222 |
+
lang="xx"
|
223 |
+
)["f1"]
|
224 |
+
out["BERTScore"] = float(sum(bs) / len(bs)) if bs else 0.0
|
225 |
+
|
226 |
+
# -- BERTurk
|
227 |
+
if "BERTurk" in metrics:
|
228 |
+
bt = self.bertscore.compute(
|
229 |
+
predictions=predictions,
|
230 |
+
references=references,
|
231 |
+
lang="tr"
|
232 |
+
)["f1"]
|
233 |
+
out["BERTurk"] = float(sum(bt) / len(bt)) if bt else 0.0
|
234 |
+
|
235 |
+
# -- COMET (ref-based)
|
236 |
+
if "COMET" in metrics:
|
237 |
+
cr = self.comet_ref.compute(
|
238 |
+
srcs=sources, hyps=predictions, refs=references
|
239 |
+
).get("scores", 0.0)
|
240 |
+
out["COMET"] = float(cr[0] if isinstance(cr, list) else cr)
|
241 |
+
|
242 |
+
# -- QE (ref-free)
|
243 |
+
if "QE" in metrics:
|
244 |
+
cq = self.comet_qe.compute(
|
245 |
+
srcs=sources, hyps=predictions
|
246 |
+
).get("scores", 0.0)
|
247 |
+
out["QE"] = float(cq[0] if isinstance(cq, list) else cq)
|
248 |
+
|
249 |
+
# -- Bootstrap CIs
|
250 |
+
if ci:
|
251 |
+
# BLEU_doc CI
|
252 |
+
if "CI_BLEU_doc" in metrics:
|
253 |
+
bsamp = bootstrap(
|
254 |
+
lambda ps, rs: self.bleu.compute(
|
255 |
+
predictions=ps,
|
256 |
+
references=[[r] for r in rs]
|
257 |
+
)["bleu"],
|
258 |
+
predictions, references
|
259 |
+
)
|
260 |
+
out["CI_BLEU_doc"] = (
|
261 |
+
float(np.percentile(bsamp, 2.5)),
|
262 |
+
float(np.percentile(bsamp, 97.5))
|
263 |
+
)
|
264 |
+
# BERTScore CI
|
265 |
+
if "CI_BERTScore" in metrics:
|
266 |
+
bsamp = bootstrap(
|
267 |
+
lambda ps, rs: sum(
|
268 |
+
self.bertscore.compute(
|
269 |
+
predictions=ps, references=rs, lang="xx"
|
270 |
+
)["f1"]
|
271 |
+
) / len(ps),
|
272 |
+
predictions, references
|
273 |
+
)
|
274 |
+
out["CI_BERTScore"] = (
|
275 |
+
float(np.percentile(bsamp, 2.5)),
|
276 |
+
float(np.percentile(bsamp, 97.5))
|
277 |
+
)
|
278 |
+
# COMET CI
|
279 |
+
if "CI_COMET" in metrics:
|
280 |
+
bsamp = bootstrap(
|
281 |
+
lambda ps, rs, ss: float(
|
282 |
+
self.comet_ref.compute(
|
283 |
+
srcs=ss, hyps=ps, refs=rs
|
284 |
+
).get("scores", [0.0])[0]
|
285 |
+
),
|
286 |
+
predictions, references, sources
|
287 |
+
)
|
288 |
+
out["CI_COMET"] = (
|
289 |
+
float(np.percentile(bsamp, 2.5)),
|
290 |
+
float(np.percentile(bsamp, 97.5))
|
291 |
+
)
|
292 |
+
|
293 |
return out
|
294 |
|
295 |
+
# ββββββββββ Error Categorizer ββββββββββ
|
296 |
+
class ErrorCategorizer:
|
297 |
+
"""
|
298 |
+
Optional: classify error types via a fine-tuned text-classification model.
|
299 |
+
Supply your own HF model name for real categories.
|
300 |
+
"""
|
301 |
+
def __init__(self, model_name: str = None):
|
302 |
+
if model_name:
|
303 |
+
self.pipe = pipeline("text-classification", model=model_name, device=0 if torch.cuda.is_available() else -1)
|
304 |
+
else:
|
305 |
+
self.pipe = None
|
306 |
+
|
307 |
+
def categorize(self, src: str, hyp: str):
|
308 |
+
if not self.pipe:
|
309 |
+
return []
|
310 |
+
inp = f"SRC: {src}\nHYP: {hyp}\nError types (pick from taxonomy):"
|
311 |
+
return self.pipe(inp, top_k=None)
|
312 |
|
313 |
# ββββββββββ Streamlit App ββββββββββ
|
314 |
@st.cache_resource
|
315 |
def load_resources():
|
316 |
mgr = ModelManager(quantize=True)
|
317 |
ev = TranslationEvaluator()
|
318 |
+
# set your error-classifier HF model here, or None to disable
|
319 |
+
err = ErrorCategorizer(model_name="your-org/translation-error-categorizer")
|
320 |
+
return mgr, ev, err
|
321 |
|
322 |
def display_model_info(info: dict):
|
323 |
st.sidebar.markdown("### Model Info")
|
324 |
+
st.sidebar.write(f"β’ **Model:** {info['model']}")
|
325 |
+
st.sidebar.write(f"β’ **Quantized:** {info['quantized']}")
|
326 |
+
st.sidebar.write(f"β’ **Device:** {info['device']}")
|
327 |
+
st.sidebar.write(f"β’ **Default tgt:** {info['default_tgt']}")
|
328 |
|
329 |
+
def show_diff(ref: str, hyp: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
differ = difflib.HtmlDiff(tabsize=4, wrapcolumn=60)
|
331 |
html = differ.make_table(
|
332 |
ref.split(), hyp.split(),
|
|
|
335 |
)
|
336 |
components.html(html, height=200, scrolling=True)
|
337 |
|
|
|
338 |
def main():
|
339 |
+
st.set_page_config(page_title="π€ TranslateβEval+", layout="wide")
|
340 |
+
st.title("π Translate β π Evaluate & Analyze")
|
341 |
+
st.write("Translate from any language, choose target, eval with advanced metrics, and inspect errors.")
|
342 |
|
343 |
+
# Sidebar
|
344 |
with st.sidebar:
|
345 |
st.header("Settings")
|
346 |
+
mgr, ev, err = load_resources()
|
347 |
info = mgr.get_info()
|
348 |
display_model_info(info)
|
349 |
|
350 |
tgt = st.selectbox(
|
351 |
+
"Target language", info["langs"],
|
352 |
+
index=info["langs"].index(info["default_tgt"])
|
|
|
|
|
|
|
|
|
|
|
|
|
353 |
)
|
354 |
+
|
355 |
+
metric_opts = [
|
356 |
+
"BLEU_doc","BLEU_seg","ChrF","TER",
|
357 |
+
"BERTScore","BERTurk","COMET","QE",
|
358 |
+
"CI_BLEU_doc","CI_BERTScore","CI_COMET"
|
359 |
+
]
|
360 |
+
metrics = st.multiselect("Metrics & CIs", metric_opts, default=["BLEU_doc","BERTScore","COMET"])
|
361 |
batch_size = st.slider("Batch size", 1, 32, 8)
|
362 |
|
363 |
+
tab1, tab2 = st.tabs(["Single","Batch CSV"])
|
364 |
|
365 |
+
# ββββββββββ Single Sentence ββββββββββ
|
366 |
with tab1:
|
367 |
+
src = st.text_area("Source text:", height=120)
|
368 |
+
ref = st.text_area("Gold reference (optional):", height=80)
|
369 |
if st.button("Translate & Eval"):
|
370 |
+
with st.spinner("β³ Translatingβ¦"):
|
371 |
+
out = mgr.translate(src, tgt_lang=tgt)
|
372 |
+
hyp = out[0]["translation_text"]
|
373 |
+
st.markdown(f"**Hypothesis ({tgt}):** {hyp}")
|
374 |
+
|
375 |
+
# metrics
|
376 |
+
scores = ev.compute_metrics([src],[ref or ""],[hyp], metrics)
|
377 |
+
# display
|
378 |
+
sd = {}
|
379 |
+
for m in metrics:
|
380 |
+
v = scores.get(m)
|
381 |
+
if m.startswith("CI_"):
|
382 |
+
low, high = v
|
383 |
+
sd[m] = f"{low:.3f} β {high:.3f}"
|
384 |
+
else:
|
385 |
+
sd[m] = f"{v:.4f}" if v is not None else "N/A"
|
386 |
st.markdown("### Scores")
|
387 |
+
st.table(pd.DataFrame([sd]))
|
388 |
+
|
389 |
# diff
|
390 |
if ref.strip():
|
391 |
+
st.markdown("### Diff View")
|
392 |
show_diff(ref, hyp)
|
393 |
|
394 |
+
# error categories
|
395 |
+
cats = err.categorize(src, hyp)
|
396 |
+
if cats:
|
397 |
+
st.markdown("### Error Categories")
|
398 |
+
st.json(cats)
|
399 |
+
|
400 |
+
# ββββββββββ Batch CSV ββββββββββ
|
401 |
with tab2:
|
402 |
uploaded = st.file_uploader("Upload CSV with `src`,`ref_tr`", type=["csv"])
|
403 |
if uploaded:
|
404 |
df = pd.read_csv(uploaded)
|
405 |
+
if not {"src","ref_tr"}.issubset(df.columns):
|
406 |
+
st.error("CSV must have `src` and `ref_tr` columns.")
|
407 |
else:
|
408 |
+
with st.spinner("β³ Batch processingβ¦"):
|
409 |
+
all_rows = []
|
410 |
prog = st.progress(0)
|
411 |
+
N = len(df)
|
412 |
+
for i in range(0, N, batch_size):
|
413 |
batch = df.iloc[i : i+batch_size]
|
414 |
srcs, refs = batch["src"].tolist(), batch["ref_tr"].tolist()
|
415 |
outs = mgr.translate(srcs, tgt_lang=tgt)
|
416 |
hyps = [o["translation_text"] for o in outs]
|
417 |
for s, r, h in zip(srcs, refs, hyps):
|
418 |
+
base = {"src":s, "ref_tr":r, "hyp_tr":h}
|
419 |
if r.strip():
|
420 |
+
sc = ev.compute_metrics([s],[r],[h], metrics)
|
421 |
+
for m in metrics:
|
422 |
+
if m.startswith("CI_"):
|
423 |
+
low, high = sc[m]
|
424 |
+
base[m] = f"{low:.3f}β{high:.3f}"
|
425 |
+
else:
|
426 |
+
base[m] = sc[m]
|
427 |
else:
|
428 |
+
for m in metrics:
|
429 |
+
base[m] = None
|
430 |
+
all_rows.append(base)
|
431 |
+
prog.progress(min(i+batch_size, N)/N)
|
432 |
+
res_df = pd.DataFrame(all_rows)
|
433 |
+
|
434 |
+
st.markdown("### Results")
|
435 |
st.dataframe(res_df, use_container_width=True)
|
436 |
+
|
437 |
+
# histograms
|
438 |
for m in metrics:
|
439 |
+
st.markdown(f"#### {m} Distribution")
|
440 |
+
col = pd.to_numeric(res_df[m], errors="coerce").dropna()
|
441 |
if col.empty:
|
442 |
+
st.write("No valid data for this metric.")
|
443 |
else:
|
444 |
+
fig = px.histogram(col, x=col)
|
445 |
st.plotly_chart(fig, use_container_width=True)
|
446 |
+
|
447 |
st.download_button("Download CSV", res_df.to_csv(index=False), "results.csv")
|
448 |
|
449 |
if __name__=="__main__":
|