File size: 1,104 Bytes
2996946
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4fad43f
2996946
 
 
 
 
 
 
 
 
 
1068d8c
 
2996946
 
1068d8c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import gradio as gr
import numpy as np
from PIL import Image
from transformers import AutoProcessor, BlipForConditionalGeneration

# Load the pretrained processor and model
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")

def caption_image(input_image: np.ndarray):
    # Convert numpy array to PIL Image and convert to RGB
    raw_image = Image.fromarray(input_image).convert('RGB')

    # Process the image
    inputs = processor(raw_image, return_tensors="pt")

    # Generate a caption for the image
    out = model.generate(**inputs, max_length=50)

    # Decode the generated tokens to text
    caption = processor.decode(out[0], skip_special_tokens=True)

    return caption

iface = gr.Interface(
    fn=caption_image, 
    inputs=gr.Image(), 
    outputs="text",
    title="Image Captioning - Kliz Andrei Millares™",
    description="Generate descriptive captions for your images using the BLIP model, brought to you by Kliz Andrei Millares™."
)

iface.launch()