import gradio as gr import numpy as np from PIL import Image from transformers import AutoProcessor, BlipForConditionalGeneration # Load the pretrained processor and model processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base") model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base") def caption_image(input_image: np.ndarray): # Convert numpy array to PIL Image and convert to RGB raw_image = Image.fromarray(input_image).convert('RGB') # Process the image inputs = processor(raw_image, return_tensors="pt") # Generate a caption for the image out = model.generate(**inputs, max_length=50) # Decode the generated tokens to text caption = processor.decode(out[0], skip_special_tokens=True) return caption iface = gr.Interface( fn=caption_image, inputs=gr.Image(), outputs="text", title="Image Captioning - Kliz Andrei Millares™", description="Generate descriptive captions for your images using the BLIP model, brought to you by Kliz Andrei Millares™." ) iface.launch()