File size: 2,304 Bytes
dbaa71b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Jira Sink
import logging
import os
import sys
from pathlib import Path

from pydantic import SecretStr

from obsei.sink.jira_sink import JiraSink, JiraSinkConfig
from obsei.source.twitter_source import (
    TwitterCredentials,
    TwitterSource,
    TwitterSourceConfig,
)
from obsei.analyzer.classification_analyzer import (
    ClassificationAnalyzerConfig,
    ZeroShotClassificationAnalyzer,
)

logger = logging.getLogger(__name__)
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

dir_path = Path(__file__).resolve().parent.parent
source_config = TwitterSourceConfig(
    keywords=["facing issue"],
    lookup_period="1h",
    tweet_fields=[
        "author_id",
        "conversation_id",
        "created_at",
        "id",
        "public_metrics",
        "text",
    ],
    user_fields=["id", "name", "public_metrics", "username", "verified"],
    expansions=["author_id"],
    place_fields=None,
    max_tweets=10,
    cred_info=TwitterCredentials(
        consumer_key=SecretStr(os.environ["twitter_consumer_key"]),
        consumer_secret=SecretStr(os.environ["twitter_consumer_secret"]),
    ),
)

source = TwitterSource()

# To start jira server locally `atlas-run-standalone --product jira`
jira_sink_config = JiraSinkConfig(
    url="http://localhost:2990/jira",
    username=SecretStr("admin"),
    password=SecretStr("admin"),
    issue_type={"name": "Task"},
    project={"key": "CUS"},
)
jira_sink = JiraSink()

text_analyzer = ZeroShotClassificationAnalyzer(
    model_name_or_path="joeddav/bart-large-mnli-yahoo-answers"
)

source_response_list = source.lookup(source_config)
for idx, source_response in enumerate(source_response_list):
    logger.info(f"source_response#'{idx}'='{source_response.__dict__}'")

analyzer_response_list = text_analyzer.analyze_input(
    source_response_list=source_response_list,
    analyzer_config=ClassificationAnalyzerConfig(
        labels=["service", "delay", "performance"],
    ),
)
for idx, an_response in enumerate(analyzer_response_list):
    logger.info(f"analyzer_response#'{idx}'='{an_response.__dict__}'")

sink_response_list = jira_sink.send_data(analyzer_response_list, jira_sink_config)
for sink_response in sink_response_list:
    if sink_response is not None:
        logger.info(f"sink_response='{sink_response}'")