File size: 2,014 Bytes
dbaa71b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import pytest

from obsei.analyzer.classification_analyzer import (
    ZeroShotClassificationAnalyzer,
    TextClassificationAnalyzer,
)
from obsei.analyzer.ner_analyzer import TransformersNERAnalyzer, SpacyNERAnalyzer
from obsei.analyzer.pii_analyzer import (
    PresidioEngineConfig,
    PresidioModelConfig,
    PresidioPIIAnalyzer,
)
from obsei.analyzer.sentiment_analyzer import VaderSentimentAnalyzer
from obsei.analyzer.translation_analyzer import TranslationAnalyzer
from obsei.preprocessor.text_cleaner import TextCleaner
from obsei.preprocessor.text_splitter import TextSplitter


@pytest.fixture(scope="session")
def zero_shot_analyzer():
    return ZeroShotClassificationAnalyzer(
        model_name_or_path="typeform/mobilebert-uncased-mnli",
    )


@pytest.fixture(scope="session")
def text_classification_analyzer():
    return TextClassificationAnalyzer(
        model_name_or_path="obsei-ai/sell-buy-intent-classifier-bert-mini",
    )


@pytest.fixture(scope="session")
def vader_analyzer():
    return VaderSentimentAnalyzer()


@pytest.fixture(scope="session")
def trf_ner_analyzer():
    return TransformersNERAnalyzer(
        model_name_or_path="dbmdz/bert-large-cased-finetuned-conll03-english",
        tokenizer_name="bert-base-cased",
    )


@pytest.fixture(scope="session")
def spacy_ner_analyzer():
    return SpacyNERAnalyzer(
        model_name_or_path="en_core_web_sm",
    )


@pytest.fixture(scope="session")
def translate_analyzer():
    return TranslationAnalyzer(
        model_name_or_path="Helsinki-NLP/opus-mt-hi-en", batch_size=1
    )


@pytest.fixture(scope="session")
def pii_analyzer():
    return PresidioPIIAnalyzer(
        engine_config=PresidioEngineConfig(
            nlp_engine_name="spacy",
            models=[PresidioModelConfig(model_name="en_core_web_lg", lang_code="en")],
        )
    )


@pytest.fixture(scope="session")
def text_cleaner():
    return TextCleaner()


@pytest.fixture(scope="session")
def text_splitter():
    return TextSplitter()