File size: 6,864 Bytes
c85c606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import logging
import json
from transformers import pipeline
from obsei_module.obsei.payload import TextPayload
from obsei_module.obsei.analyzer.classification_analyzer import ZeroShotClassificationAnalyzer, ClassificationAnalyzerConfig
from obsei_module.obsei.source.website_crawler_source import TrafilaturaCrawlerConfig, TrafilaturaCrawlerSource
from obsei_module.obsei.sink.http_sink import HttpSinkConfig, HttpSink
from obsei_module.obsei.analyzer.sentiment_analyzer import *
import connect_mongo
import pymongo


async def get_object_by_link(db_name, collection_name, link):
    collection = connect_mongo.connect_to_mongo(db_name, collection_name)
    
    if collection is None:
        print("Failed to connect to MongoDB.")
        return None

    result = collection.find_one({"link": link})
    
    # if result:
    #     print(f"Object found: {result}")
    # else:
    #     print(f"No object found for the link: {link}")
    
    return result


# Hàm kết nối và kiểm tra bản ghi trong DB khác
async def get_existing_record_by_name(db_name, collection_name, name, link):
    collection = connect_mongo.connect_to_mongo(db_name, collection_name)
    
    if collection is None:
        print("Failed to connect to MongoDB.")
        return None

    # Kiểm tra bản ghi có cùng name và link hay không
    result = collection.find_one({"name": name, "link": link})
    
    # if result:
    #     print(f"Existing record found for name: {name} and link: {link}")
    # else:
    #     print(f"No existing record found for name: {name} and link: {link}")
    
    return result

# Hàm lưu processed_text vào MongoDB với kiểm tra name
async def save_processed_text_to_mongo(db_name, collection_name, link, processed_text, name=None):
    collection = connect_mongo.connect_to_mongo(db_name, collection_name)

    if collection is None:
        print("Failed to connect to MongoDB.")
        return None

    # Tạo bản ghi mới hoặc cập nhật bản ghi cũ
    document = {
        "link": link,
        "processed_text": processed_text,
        "name": name,  # Thêm name cho bản ghi mới
    }

    

    # Kiểm tra sự tồn tại của bản ghi trong DB dự phòng
    existing_record = await get_existing_record_by_name(db_name, collection_name, name, link)
    
    if existing_record:
        # Nếu bản ghi tồn tại, cập nhật
        result = collection.update_one(
            {"_id": existing_record["_id"]},
            {
                "$set": document
            }
        )
        if result.modified_count > 0:
            print(f"Successfully updated the record for {link}.")
        else:
            print(f"No changes made to the record for {link}.")
    else:
        # Nếu bản ghi chưa tồn tại, tạo mới
        result = collection.insert_one(document)
        print(f"Successfully inserted a new record for {link}.")
    
    return result

# Hàm xử lý URL, lấy dữ liệu, phân tích và lưu processed_text vào MongoDB
async def process_url(url: str, db_name: str, collection_name: str,backup_db_name: str, backup_collection_name: str):
    """Crawl data from the URL and analyze it with a Zero-shot classification model."""
    logging.basicConfig(level=logging.INFO)
    logger = logging.getLogger(__name__)

    # Bước 1: Crawl dữ liệu từ URL
    crawler_config = TrafilaturaCrawlerConfig(
        urls=[url]
    )
    crawler = TrafilaturaCrawlerSource()

    crawled_data = crawler.lookup(config=crawler_config)
    if not crawled_data:
        logger.error("No data found from crawler")
        return {"error": "No data found from crawler"}
    

    # Bước 2: Cấu hình phân tích với Zero-shot classification
    analyzer_config = ClassificationAnalyzerConfig(
        labels=["Sports", "Politics", "Technology", "Entertainment"],
        multi_class_classification=False,
        add_positive_negative_labels=False
    )

    analyzer = ZeroShotClassificationAnalyzer(
        model_name_or_path="facebook/bart-large-mnli",
        device="auto"
    )

    # Phân tích dữ liệu crawled_data
    analysis_results = analyzer.analyze_input(
        source_response_list=crawled_data,
        analyzer_config=analyzer_config
    )
#     transformers_analyzer_config = TransformersSentimentAnalyzerConfig(
#     labels=["positive", "negative"],
#     multi_class_classification=False,
#     add_positive_negative_labels=True
# )
    # transformers_analyzer = TransformersSentimentAnalyzer(model_name_or_path="facebook/bart-large-mnli", device="auto")
    # transformers_results = transformers_analyzer.analyze_input(crawled_data, analyzer_config=transformers_analyzer_config)

    # Cấu hình HttpSink (nếu cần gửi dữ liệu đi nơi khác)
    http_sink_config = HttpSinkConfig(
        url="https://httpbin.org/post", 
        headers={"Content-type": "application/json"},
        base_payload={"common_field": "test cua VNY"},
    )

    http_sink = HttpSink()

    responses = http_sink.send_data(analysis_results, http_sink_config)

    response_data = []
    for i, response in enumerate(responses):
        response_content = response.read().decode("utf-8")
        response_json = json.loads(response_content)
        
        response_data.append({
            "response_index": i + 1,
            "content": response_json,
            "status_code": response.status,
            "headers": dict(response.getheaders())
        })

    content_data = [item["content"] for item in response_data]
    processed_text = content_data[0].get("json", {}).get('segmented_data', 'No processed text available.')
    processed_text1 = content_data[0].get("json", {})
    content_data = processed_text1.get('meta').get('text')
    existing_record = await get_object_by_link(db_name, collection_name, url)
    if existing_record:
     existing_segmented_data = existing_record.get("segmented_data", {})
     existing_segmented_data.update({"new_analysis": processed_text})
     await save_processed_text_to_mongo(backup_db_name, backup_collection_name, url, processed_text, name="Sentiment Analysis")
    else:
     await save_processed_text_to_mongo(backup_db_name, backup_collection_name, url, processed_text, name="Sentiment Analysis")

    return processed_text,content_data

# url = "https://laodong.vn/bong-da-quoc-te/vua-phat-goc-nicolas-jover-la-vo-gia-voi-arsenal-1431091.ldo"
# db_name = "test"
# import asyncio
# collection_name = "articles"
# backup_db_name = "backup_test"
# backup_collection_name = "articles_analysis"
# processed_text = asyncio.run(process_url(url, db_name, collection_name, backup_db_name, backup_collection_name))