File size: 3,171 Bytes
0fd7b28
e85570c
 
1e30ecb
e85570c
 
 
cabc27e
f065c0b
e85570c
 
 
 
 
 
 
 
 
 
 
dc3475e
 
0fd7b28
dc3475e
e528373
 
f07215d
 
 
 
42a4fb9
3951424
2f1925b
8ed4b31
 
dc3475e
8ed4b31
f07215d
 
 
 
 
 
a90174f
0fd7b28
e85570c
c36899b
a90174f
b3de19a
e85570c
 
ce452da
22bbf6e
3951424
 
5e5252b
e85570c
41e98d3
cb0d503
f07215d
0002bbd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import gradio as gr 
from transformers import AutoTokenizer, TFGPT2LMHeadModel

review_model = TFGPT2LMHeadModel.from_pretrained("kmkarakaya/turkishReviews-ds")
review_tokenizer = AutoTokenizer.from_pretrained("kmkarakaya/turkishReviews-ds")

def generate_review(prompt):
  if prompt=="":
     prompt = " "
  input_ids = review_tokenizer.encode(prompt, return_tensors='tf')
  context_length = 40
  output = review_model.generate(
      input_ids, 
      do_sample=True,
      max_length=context_length, 
      top_k=10,
      no_repeat_ngram_size=2, 
      early_stopping=True
  )
  return(review_tokenizer.decode(output[0], skip_special_tokens=True))
  
  

title="Turkish Review Generator: A GPT2 based Text Generator Trained with a Custom Dataset"
description= """Generate a review in Turkish by providing a prompt or selecting an example prompt below. 
Generation takes <b>15-20 seconds</b> on average.
Enjoy!

![visitor badge](https://visitor-badge.glitch.me/badge?page_id=Auto_Review_Generation_in_Turkish)
"""

#<p>NOTE: Examples can sometimes  generate ERROR. When you see ERROR on the screen <b>just click SUBMIT</b>. Model will generate text in 15-20 secs.</p> 
article = """<p style='text-align: center'>On YouTube:</p>
            <p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v9d9w-L0S8XUXXdNks7vPBL' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p> 
            <p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v8aajw6m9MRNbAAbL63flKD' target='_blank'>Hugging Face kütüphanesini kullanarak bir GPT2 Transformer Dil Modelini Kendi Veri Setimizle nasıl eğitip kullanabiliriz? (in Turkish)</a></p>
            <p style='text-align: center'>On Medium:</p>
            <p style='text-align: center'><a href='https://medium.com/deep-learning-with-keras/how-to-train-a-hugging-face-causal-language-model-from-scratch-8d08d038168f' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p>"""                    
examples=["Bir hafta önce aldığım cep telefonu çalışmıyor.",
          "Tatil için yaptığım rezervasyonu iptal edemiyorum.",
          "Geçen ay sipariş verdiğim ayakkabı gelmedi.",
          "Abone olduğum spor salonu kapandı.",
          "Buzdolabından garip sesler geliyor.",
          "Otel tam bir fiyasko."] 


demo = gr.Interface(fn=generate_review, 
                    inputs= gr.Textbox(lines=5, label="Prompt", placeholder="enter or select a prompt below..."),
                    outputs= gr.Textbox(lines=5, label="Generated Review", placeholder="genereated review will be here..."),
                    examples=examples,
                    title=title,
                    description= description,
                    article = article,
                    #cache_examples = False
                    allow_flagging="manual",
                    flagging_options=["good","moderate", "non-sense", ]
                    #flagging_dir='./flags'
                    )



demo.launch()