Spaces:
Runtime error
Runtime error
File size: 3,171 Bytes
0fd7b28 e85570c 1e30ecb e85570c cabc27e f065c0b e85570c dc3475e 0fd7b28 dc3475e e528373 f07215d 42a4fb9 3951424 2f1925b 8ed4b31 dc3475e 8ed4b31 f07215d a90174f 0fd7b28 e85570c c36899b a90174f b3de19a e85570c ce452da 22bbf6e 3951424 5e5252b e85570c 41e98d3 cb0d503 f07215d 0002bbd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import gradio as gr
from transformers import AutoTokenizer, TFGPT2LMHeadModel
review_model = TFGPT2LMHeadModel.from_pretrained("kmkarakaya/turkishReviews-ds")
review_tokenizer = AutoTokenizer.from_pretrained("kmkarakaya/turkishReviews-ds")
def generate_review(prompt):
if prompt=="":
prompt = " "
input_ids = review_tokenizer.encode(prompt, return_tensors='tf')
context_length = 40
output = review_model.generate(
input_ids,
do_sample=True,
max_length=context_length,
top_k=10,
no_repeat_ngram_size=2,
early_stopping=True
)
return(review_tokenizer.decode(output[0], skip_special_tokens=True))
title="Turkish Review Generator: A GPT2 based Text Generator Trained with a Custom Dataset"
description= """Generate a review in Turkish by providing a prompt or selecting an example prompt below.
Generation takes <b>15-20 seconds</b> on average.
Enjoy!

"""
#<p>NOTE: Examples can sometimes generate ERROR. When you see ERROR on the screen <b>just click SUBMIT</b>. Model will generate text in 15-20 secs.</p>
article = """<p style='text-align: center'>On YouTube:</p>
<p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v9d9w-L0S8XUXXdNks7vPBL' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p>
<p style='text-align: center'><a href='https://youtube.com/playlist?list=PLQflnv_s49v8aajw6m9MRNbAAbL63flKD' target='_blank'>Hugging Face kütüphanesini kullanarak bir GPT2 Transformer Dil Modelini Kendi Veri Setimizle nasıl eğitip kullanabiliriz? (in Turkish)</a></p>
<p style='text-align: center'>On Medium:</p>
<p style='text-align: center'><a href='https://medium.com/deep-learning-with-keras/how-to-train-a-hugging-face-causal-language-model-from-scratch-8d08d038168f' target='_blank'>How to Train a Hugging Face Causal Language Model from Scratch with a Custom Dataset and a Custom Tokenizer?</a></p>"""
examples=["Bir hafta önce aldığım cep telefonu çalışmıyor.",
"Tatil için yaptığım rezervasyonu iptal edemiyorum.",
"Geçen ay sipariş verdiğim ayakkabı gelmedi.",
"Abone olduğum spor salonu kapandı.",
"Buzdolabından garip sesler geliyor.",
"Otel tam bir fiyasko."]
demo = gr.Interface(fn=generate_review,
inputs= gr.Textbox(lines=5, label="Prompt", placeholder="enter or select a prompt below..."),
outputs= gr.Textbox(lines=5, label="Generated Review", placeholder="genereated review will be here..."),
examples=examples,
title=title,
description= description,
article = article,
#cache_examples = False
allow_flagging="manual",
flagging_options=["good","moderate", "non-sense", ]
#flagging_dir='./flags'
)
demo.launch() |