import gradio as gr from transformers import pipeline import time # p = pipeline("automatic-speech-recognition", model="/Users/mkesavan/aidev/speechAI-trials/xlsr-wave2vec/wav2vec2-large-xls-r-300m-tamil-colab/checkpoint-1600") # combining Tamil and arabic p_ta = pipeline("automatic-speech-recognition", model="kmknair/wav2vec2-xlsr-tamil") p_ar = pipeline("automatic-speech-recognition", model="kmknair/wav2vec2-xlsr-arabic") def transcribe_ta(audio): text = p_ta(audio)["text"] return text def transcribe_ta_stream(audio, state=""): time.sleep(2) text = p_ta(audio)["text"] state += text + " " return state, state def transcribe_ar(audio): text = p_ar(audio)["text"] return text def transcribe_ar_stream(audio, state=""): time.sleep(2) text = p_ar(audio)["text"] state += text + " " return state, state # transcribe Tamil stream ta_tr_stream_tab = gr.Interface( fn=transcribe_ta_stream, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True) # transcribe Arabic stream ar_tr_stream_tab = gr.Interface( fn=transcribe_ar_stream, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True) # transcribe Tamil file ta_tr_file_tab = gr.Interface( fn=transcribe_ta, inputs=[ gr.Audio(source="microphone", type="filepath") ], outputs="text") # transcribe Arabic file ar_tr_file_tab = gr.Interface( fn=transcribe_ar, inputs=[ gr.Audio(source="microphone", type="filepath") ], outputs="text") tabs = gr.TabbedInterface( [ta_tr_stream_tab, ar_tr_stream_tab,ta_tr_file_tab, ar_tr_file_tab], [ "Tamil Live Transcription", "Arabic Live Transcription", "Tamil File Transcription", "Arabic File Transcription", ] ) if __name__ == "__main__": tabs.launch()