import gradio as gr from transformers import pipeline import time # p = pipeline("automatic-speech-recognition", model="/Users/mkesavan/aidev/speechAI-trials/xlsr-wave2vec/wav2vec2-large-xls-r-300m-tamil-colab/checkpoint-1600") # combining Tamil and arabic p_ta = pipeline("automatic-speech-recognition", model="kmknair/wav2vec2-xlsr-tamil") p_ar = pipeline("automatic-speech-recognition", model="kmknair/wav2vec2-xlsr-arabic") p_en = pipeline("automatic-speech-recognition", mdoel="patrickvonplaten/hubert-xlarge-ls960-ft-4-gram") def transcribe_ta(audio_u, audio_m): text = "" if(audio_u is not None): text += p_ta(audio_u)["text"] if (audio_m is not None): text += p_ta(audio_m)["text"] return text def transcribe_ta_stream(audio, state=""): time.sleep(2) text = p_ta(audio)["text"] state += text + " " return state, state def transcribe_ar(audio_u, audio_m): text = "" if audio_u is not None: text += p_ar(audio_u)["text"] if audio_m is not None: text += p_ar(audio_m)["text"] return text def transcribe_ar_stream(audio, state=""): time.sleep(2) text = p_ar(audio)["text"] state += text + " " return state, state def transcribe_en(audio_u, audio_m): text = "" if audio_u is not None: text += p_en(audio_u)["text"] if audio_m is not None: text += p_en(audio_m)["text"] return text def transcribe_en_stream(audio, state=""): time.sleep(2) text = p_en(audio)["text"] state += text + " " return state, state # transcribe Tamil stream ta_tr_stream_tab = gr.Interface( fn=transcribe_ta_stream, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True) # transcribe Arabic stream ar_tr_stream_tab = gr.Interface( fn=transcribe_ar_stream, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True) # transcribe English stream en_tr_stream_tab = gr.Interface( fn=transcribe_en_stream, inputs=[ gr.Audio(source="microphone", type="filepath", streaming=True), "state" ], outputs=[ "textbox", "state" ], live=True) # transcribe Tamil file ta_tr_file_tab = gr.Interface( fn=transcribe_ta, inputs=[ gr.Audio(type="filepath"), gr.Audio(source="microphone", type="filepath") ], outputs="text") # transcribe Arabic file ar_tr_file_tab = gr.Interface( fn=transcribe_ar, inputs=[ gr.Audio(type="filepath"), gr.Audio(source="microphone", type="filepath") ], outputs="text") # transcribe English file en_tr_file_tab = gr.Interface( fn=transcribe_en, inputs=[ gr.Audio(type="filepath"), gr.Audio(source="microphone", type="filepath") ], outputs="text") tabs = gr.TabbedInterface( [ ar_tr_stream_tab, en_tr_stream_tab, ta_tr_stream_tab, ar_tr_file_tab, en_tr_file_tab, ta_tr_file_tab ], [ "Arabic Live Transcription", "English Live Transcription", "Tamil Live Transcription", "Arabic File Transcription", "English File Transcription", "Tamil File Transcription" ] ) if __name__ == "__main__": tabs.launch()