File size: 3,383 Bytes
9b5b26a
 
 
 
c19d193
6aae614
f6967c3
8fe992b
9b5b26a
 
5df72d6
9b5b26a
3d1237b
9b5b26a
 
 
 
 
 
 
 
f6967c3
 
 
10e12bb
 
8e3d71f
10e12bb
8e3d71f
10e12bb
8e3d71f
f6967c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b5b26a
 
 
 
 
 
 
 
 
 
 
 
 
 
8c01ffb
 
6aae614
ae7a494
 
 
 
e121372
bf6d34c
 
29ec968
fe328e0
13d500a
8c01ffb
 
9b5b26a
 
fa191b5
 
8c01ffb
861422e
 
9b5b26a
8c01ffb
8fe992b
74a4b3b
8c01ffb
 
 
 
 
 
90fca0b
21ba205
8fe992b
 
9b5b26a
8c01ffb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
import datetime
import requests
import pytz
import yaml
from tools.final_answer import FinalAnswerTool
from langchain_community.document_loaders import ArxivLoader

from Gradio_UI import GradioUI

# Below is an example of a tool that does nothing. Amaze us with your creativity !
@tool
def my_custom_tool(arg1:str, arg2:int)-> str: #it's import to specify the return type
    #Keep this format for the description / args / args description but feel free to modify the tool
    """A tool that does nothing yet 
    Args:
        arg1: the first argument
        arg2: the second argument
    """
    return "What magic will you build ?"


@tool
def arxiv_fetch_paper_tool(arxiv_id : str) -> str:
    """ An Tool that would fetch research papers from ArXiV collection and parse it and return the PDF text
    Args:
        arxiv_id: id for the arxiv paper which would be like 2312.11805
    Returns:
        text of the paper content and title of the paper
    """
    from langchain_community.document_loaders import ArxivLoader
    loader = ArxivLoader(query=arxiv_id)
    docs = loader.load()
    title = docs[0].metadata.get("title", "this paper")
    return "\n".join([doc.page_content for doc in docs]), title




# @tool
# def write_python_code(coding_problem:str) -> str:
#     """A tool that would code to solve user request in Python on a jupyter notebook environment
#     Args:
#         coding_problem: the problem statement needed to be solved by writing python code.
#     Returns the code that has to be replaced in the notebook cell.
#     """




@tool
def get_current_time_in_timezone(timezone: str) -> str:
    """A tool that fetches the current local time in a specified timezone.
    Args:
        timezone: A string representing a valid timezone (e.g., 'America/New_York').
    """
    try:
        # Create timezone object
        tz = pytz.timezone(timezone)
        # Get current time in that timezone
        local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
        return f"The current local time in {timezone} is: {local_time}"
    except Exception as e:
        return f"Error fetching time for timezone '{timezone}': {str(e)}"


final_answer = FinalAnswerTool()

# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud' 

model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None,
)


# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)



with open("prompts.yaml", 'r') as stream:
    prompt_templates = yaml.safe_load(stream)
    
agent = CodeAgent(
    model=model,
    tools=[final_answer,arxiv_fetch_paper_tool,image_generation_tool], ## add your tools here (don't remove final answer)
    max_steps=6,
    verbosity_level=1,
    grammar=None,
    planning_interval=None,
    name=None,
    description=None,
    prompt_templates=prompt_templates,
    additional_authorized_imports=['numpy','pandas','pip','matplotlib','SciPy','tensorflow','requests','notebook']
)


GradioUI(agent).launch()