knkarthick commited on
Commit
bebf963
1 Parent(s): 4cfa601

Add application file

Browse files
Files changed (1) hide show
  1. app.py +75 -0
app.py ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.system("pip install gradio==3.0.18")
3
+ from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, AutoModelForTokenClassification
4
+ import gradio as gr
5
+ import spacy
6
+ nlp = spacy.load('en_core_web_sm')
7
+ nlp.add_pipe('sentencizer')
8
+
9
+ def split_in_sentences(text):
10
+ doc = nlp(text)
11
+ return [str(sent).strip() for sent in doc.sents]
12
+
13
+ def make_spans(text,results):
14
+ results_list = []
15
+ for i in range(len(results)):
16
+ results_list.append(results[i]['label'])
17
+ facts_spans = []
18
+ facts_spans = list(zip(split_in_sentences(text),results_list))
19
+ return facts_spans
20
+
21
+ auth_token = os.environ.get("HF_Token")
22
+
23
+ ##Speech Recognition
24
+ asr = pipeline("automatic-speech-recognition", "facebook/wav2vec2-base-960h")
25
+ def transcribe(audio):
26
+ text = asr(audio)["text"]
27
+ return text
28
+ def speech_to_text(speech):
29
+ text = asr(speech)["text"]
30
+ return text
31
+
32
+ ##Summarization
33
+ summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
34
+ def summarize_text(text):
35
+ resp = summarizer(text)
36
+ stext = resp[0]['summary_text']
37
+ return stext
38
+
39
+ ##Fiscal Tone Analysis
40
+ fin_model= pipeline("sentiment-analysis", model='knkarthick/Sentiment-Analysis', tokenizer='knkarthick/Sentiment-Analysis')
41
+ def text_to_sentiment(text):
42
+ sentiment = fin_model(text)[0]["label"]
43
+ return sentiment
44
+
45
+ ##Fiscal Sentiment by Sentence
46
+ def fin_ext(text):
47
+ results = fin_model(split_in_sentences(text))
48
+ return make_spans(text,results)
49
+
50
+ demo = gr.Blocks()
51
+
52
+ with demo:
53
+ gr.Markdown("## Meeting Transcript AI Use Cases")
54
+ gr.Markdown("Takes Meeting Data/ Recording/ Record Meetings and give out Summary & Sentiment of the discussion")
55
+ with gr.Row():
56
+ with gr.Column():
57
+ audio_file = gr.inputs.Audio(source="microphone", type="filepath")
58
+ with gr.Row():
59
+ b1 = gr.Button("Recognize Speech")
60
+ with gr.Row():
61
+ text = gr.Textbox(value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month. The department expects inflation to continue to rise.")
62
+ b1.click(speech_to_text, inputs=audio_file, outputs=text)
63
+ with gr.Row():
64
+ b2 = gr.Button("Summarize Text")
65
+ stext = gr.Textbox()
66
+ b2.click(summarize_text, inputs=text, outputs=stext)
67
+ with gr.Row():
68
+ b3 = gr.Button("Overall Meeting Sentiment")
69
+ label = gr.Label()
70
+ b3.click(text_to_sentiment, inputs=stext, outputs=label)
71
+ with gr.Row():
72
+ b5 = gr.Button("Dialogue Sentiment Analysis")
73
+ fin_spans = gr.HighlightedText()
74
+ b5.click(fin_ext, inputs=text, outputs=fin_spans)
75
+ demo.launch()