File size: 4,604 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
<p align="center">
<img src="flores_logo.png" width="500">
</p>

# Flores101: Large-Scale Multilingual Machine Translation

## Introduction

Baseline pretrained models for small and large tracks of WMT 21 Large-Scale Multilingual Machine Translation competition.

Flores Task at WMT 21: http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html

Flores announement blog post: https://ai.facebook.com/blog/flores-researchers-kick-off-multilingual-translation-challenge-at-wmt-and-call-for-compute-grants/



## Pretrained models

Model | Num layers | Embed dimension | FFN dimension| Vocab Size | #params | Download
---|---|---|---|---|---|---
`flores101_mm100_615M` | 12 | 1024 | 4096 | 256,000 | 615M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz
`flores101_mm100_175M` | 6 | 512 | 2048 | 256,000 | 175M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz


These models are trained similar to [M2M-100](https://arxiv.org/abs/2010.11125) with additional support for the languages that are part of the WMT Large-Scale Multilingual Machine Translation track. Full list of languages can be found at the bottom.


## Example Generation code

### Download model, sentencepiece vocab

```bash
fairseq=/path/to/fairseq
cd $fairseq

# Download 615M param model.
wget https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz

# Extract 
tar -xvzf flores101_mm100_615M.tar.gz
```

### Encode using our SentencePiece Model
Note: Install SentencePiece from [here](https://github.com/google/sentencepiece)


```bash
fairseq=/path/to/fairseq
cd $fairseq

# Download example dataset From German to French
sacrebleu --echo src -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.de
sacrebleu --echo ref -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.fr

for lang in de fr ; do
    python scripts/spm_encode.py \
        --model flores101_mm100_615M/sentencepiece.bpe.model \
        --output_format=piece \
        --inputs=raw_input.de-fr.${lang} \
        --outputs=spm.de-fr.${lang}
done
```

### Binarization

```bash
fairseq-preprocess \
    --source-lang de --target-lang fr \
    --testpref spm.de-fr \
    --thresholdsrc 0 --thresholdtgt 0 \
    --destdir data_bin \
    --srcdict flores101_mm100_615M/dict.txt --tgtdict flores101_mm100_615M/dict.txt
```

### Generation 


```bash
fairseq-generate \
    data_bin \
    --batch-size 1 \
    --path flores101_mm100_615M/model.pt \
    --fixed-dictionary flores101_mm100_615M/dict.txt \
    -s de -t fr \
    --remove-bpe 'sentencepiece' \
    --beam 5 \
    --task translation_multi_simple_epoch \
    --lang-pairs flores101_mm100_615M/language_pairs.txt \
    --decoder-langtok --encoder-langtok src \
    --gen-subset test \
    --fp16 \
    --dataset-impl mmap \
    --distributed-world-size 1 --distributed-no-spawn
```

### Supported Languages and lang code

Language | lang code
---|---
Akrikaans | af
Amharic | am
Arabic | ar
Assamese | as
Asturian | ast
Aymara | ay
Azerbaijani | az
Bashkir | ba
Belarusian | be
Bulgarian | bg
Bengali | bn
Breton | br
Bosnian | bs
Catalan | ca
Cebuano | ceb
Chokwe | cjk
Czech | cs
Welsh | cy
Danish | da
German | de
Dyula| dyu
Greek | el
English | en
Spanish | es
Estonian | et
Persian | fa
Fulah | ff
Finnish | fi
French | fr
Western Frisian | fy
Irish | ga
Scottish Gaelic | gd
Galician | gl
Gujarati | gu
Hausa | ha
Hebrew | he
Hindi | hi
Croatian | hr
Haitian Creole | ht
Hungarian | hu
Armenian | hy
Indonesian | id
Igbo | ig
Iloko | ilo
Icelandic | is
Italian | it
Japanese | ja
Javanese | jv
Georgian | ka
Kachin | kac
Kamba | kam
Kabuverdianu | kea
Kongo | kg
Kazakh | kk
Central Khmer | km
Kimbundu | kmb
Northern Kurdish | kmr
Kannada | kn
Korean | ko
Kurdish | ku
Kyrgyz | ky
Luxembourgish | lb
Ganda | lg
Lingala | ln
Lao | lo
Lithuanian | lt
Luo | luo
Latvian | lv
Malagasy | mg
Maori | mi
Macedonian | mk
Malayalam | ml
Mongolian | mn
Marathi | mr
Malay | ms
Maltese | mt
Burmese | my
Nepali | ne
Dutch | nl
Norwegian | no
Northern Sotho | ns
Nyanja | ny
Occitan | oc
Oromo | om
Oriya | or
Punjabi | pa
Polish | pl
Pashto | ps
Portuguese | pt
Quechua | qu
Romanian | ro
Russian | ru
Sindhi | sd
Shan | shn
Sinhala | si
Slovak | sk
Slovenian | sl
Shona | sn
Somali | so
Albanian | sq
Serbian | sr
Swati | ss
Sundanese | su
Swedish | sv
Swahili | sw
Tamil | ta
Telugu | te
Tajik | tg
Thai | th
Tigrinya | ti
Tagalog | tl
Tswana | tn
Turkish | tr
Ukrainian | uk
Umbundu | umb
Urdu | ur
Uzbek | uz
Vietnamese | vi
Wolof | wo
Xhosa | xh
Yiddish | yi
Yoruba | yo
Chinese| zh
Zulu | zu