Spaces:
Running
Running
File size: 4,604 Bytes
650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
<p align="center">
<img src="flores_logo.png" width="500">
</p>
# Flores101: Large-Scale Multilingual Machine Translation
## Introduction
Baseline pretrained models for small and large tracks of WMT 21 Large-Scale Multilingual Machine Translation competition.
Flores Task at WMT 21: http://www.statmt.org/wmt21/large-scale-multilingual-translation-task.html
Flores announement blog post: https://ai.facebook.com/blog/flores-researchers-kick-off-multilingual-translation-challenge-at-wmt-and-call-for-compute-grants/
## Pretrained models
Model | Num layers | Embed dimension | FFN dimension| Vocab Size | #params | Download
---|---|---|---|---|---|---
`flores101_mm100_615M` | 12 | 1024 | 4096 | 256,000 | 615M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz
`flores101_mm100_175M` | 6 | 512 | 2048 | 256,000 | 175M | https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_175M.tar.gz
These models are trained similar to [M2M-100](https://arxiv.org/abs/2010.11125) with additional support for the languages that are part of the WMT Large-Scale Multilingual Machine Translation track. Full list of languages can be found at the bottom.
## Example Generation code
### Download model, sentencepiece vocab
```bash
fairseq=/path/to/fairseq
cd $fairseq
# Download 615M param model.
wget https://dl.fbaipublicfiles.com/flores101/pretrained_models/flores101_mm100_615M.tar.gz
# Extract
tar -xvzf flores101_mm100_615M.tar.gz
```
### Encode using our SentencePiece Model
Note: Install SentencePiece from [here](https://github.com/google/sentencepiece)
```bash
fairseq=/path/to/fairseq
cd $fairseq
# Download example dataset From German to French
sacrebleu --echo src -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.de
sacrebleu --echo ref -l de-fr -t wmt19 | head -n 20 > raw_input.de-fr.fr
for lang in de fr ; do
python scripts/spm_encode.py \
--model flores101_mm100_615M/sentencepiece.bpe.model \
--output_format=piece \
--inputs=raw_input.de-fr.${lang} \
--outputs=spm.de-fr.${lang}
done
```
### Binarization
```bash
fairseq-preprocess \
--source-lang de --target-lang fr \
--testpref spm.de-fr \
--thresholdsrc 0 --thresholdtgt 0 \
--destdir data_bin \
--srcdict flores101_mm100_615M/dict.txt --tgtdict flores101_mm100_615M/dict.txt
```
### Generation
```bash
fairseq-generate \
data_bin \
--batch-size 1 \
--path flores101_mm100_615M/model.pt \
--fixed-dictionary flores101_mm100_615M/dict.txt \
-s de -t fr \
--remove-bpe 'sentencepiece' \
--beam 5 \
--task translation_multi_simple_epoch \
--lang-pairs flores101_mm100_615M/language_pairs.txt \
--decoder-langtok --encoder-langtok src \
--gen-subset test \
--fp16 \
--dataset-impl mmap \
--distributed-world-size 1 --distributed-no-spawn
```
### Supported Languages and lang code
Language | lang code
---|---
Akrikaans | af
Amharic | am
Arabic | ar
Assamese | as
Asturian | ast
Aymara | ay
Azerbaijani | az
Bashkir | ba
Belarusian | be
Bulgarian | bg
Bengali | bn
Breton | br
Bosnian | bs
Catalan | ca
Cebuano | ceb
Chokwe | cjk
Czech | cs
Welsh | cy
Danish | da
German | de
Dyula| dyu
Greek | el
English | en
Spanish | es
Estonian | et
Persian | fa
Fulah | ff
Finnish | fi
French | fr
Western Frisian | fy
Irish | ga
Scottish Gaelic | gd
Galician | gl
Gujarati | gu
Hausa | ha
Hebrew | he
Hindi | hi
Croatian | hr
Haitian Creole | ht
Hungarian | hu
Armenian | hy
Indonesian | id
Igbo | ig
Iloko | ilo
Icelandic | is
Italian | it
Japanese | ja
Javanese | jv
Georgian | ka
Kachin | kac
Kamba | kam
Kabuverdianu | kea
Kongo | kg
Kazakh | kk
Central Khmer | km
Kimbundu | kmb
Northern Kurdish | kmr
Kannada | kn
Korean | ko
Kurdish | ku
Kyrgyz | ky
Luxembourgish | lb
Ganda | lg
Lingala | ln
Lao | lo
Lithuanian | lt
Luo | luo
Latvian | lv
Malagasy | mg
Maori | mi
Macedonian | mk
Malayalam | ml
Mongolian | mn
Marathi | mr
Malay | ms
Maltese | mt
Burmese | my
Nepali | ne
Dutch | nl
Norwegian | no
Northern Sotho | ns
Nyanja | ny
Occitan | oc
Oromo | om
Oriya | or
Punjabi | pa
Polish | pl
Pashto | ps
Portuguese | pt
Quechua | qu
Romanian | ro
Russian | ru
Sindhi | sd
Shan | shn
Sinhala | si
Slovak | sk
Slovenian | sl
Shona | sn
Somali | so
Albanian | sq
Serbian | sr
Swati | ss
Sundanese | su
Swedish | sv
Swahili | sw
Tamil | ta
Telugu | te
Tajik | tg
Thai | th
Tigrinya | ti
Tagalog | tl
Tswana | tn
Turkish | tr
Ukrainian | uk
Umbundu | umb
Urdu | ur
Uzbek | uz
Vietnamese | vi
Wolof | wo
Xhosa | xh
Yiddish | yi
Yoruba | yo
Chinese| zh
Zulu | zu
|