File size: 5,247 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Megatron-11b

Megatron-11b is a unidirectional language model with `11B` parameters based on [Megatron-LM](https://arxiv.org/pdf/1909.08053.pdf). Following the original Megatron work, we trained the model using intra-layer model parallelism with each layer's parameters split across 8 GPUs.

Megatron-11b is trained on the same data and uses the same byte-pair encoding (BPE) as [RoBERTa](https://arxiv.org/pdf/1907.11692.pdf).

## Pre-trained models

Model | Description | # params | # filesize | Download
---|---|---|---|---
`megatron_11b` | megatron_11b unidirectional language model | 11B | 19Gb | [megatron_11b.tar.gz](https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz)

#### Architecture:

Param | Value
---|---
embed_dim | 3072
ffn_dim | 3072 * 6
layers | 72
attention heads | 32

#### Training details:

Param | value
---|---
bsz | 512
num_updates | 300,000
peak_lr | 1.5e-04
lr scheduler | inverse_sqrt
clip norm | 0.0


## Example training command (model parallel)

Megatron-11b contains too many parameters to train on a single GPU. Following
the original Megatron work, we adopt an intra-layer model parallel training
approach in which each layer's parameters are split across multiple GPUs and
activations and gradients are communicated during the forward/backward pass,
respectively. We similarly split the loss computation using the
`vocab_parallel_cross_entropy` criterion.

The following training command illustrates how to do model parallel training in
fairseq. We assume that each machine (node) has 8 GPUs among which to split the
model parameters (`--model-parallel-size 8`). If you have access to multiple
nodes, you may combine this with data parallel training by increasing
`--distributed-world-size`.

To train Megatron-11b on a single node:


```bash
fairseq-train <DATA_PATH> \
  --distributed-world-size 8  \
  --memory-efficient-fp16 \
  --num-workers 2 \
  --model-parallel-size 8 \
  --criterion vocab_parallel_cross_entropy \
  --task language_modeling \
  --sample-break-mode none \
  --tokens-per-sample 1024 \
  --arch transformer_lm_megatron_11b \
  --share-decoder-input-output-embed \
  --optimizer adam --adam-betas "(0.9, 0.98)" --adam-eps 1e-08 --clip-norm 0.0 \
  --lr-scheduler inverse_sqrt --lr 0.00015 \
  --warmup-updates 3000 --weight-decay 0.01 \
  --dropout 0.1 --attention-dropout 0.1 \
  --batch-size 2 \
  --max-update 300000;
```

Note: Above was tested on `DGX-1` box, with `8xV100-32Gb` GPUs.

## Results

**[Wikitext103](https://blog.einstein.ai/the-wikitext-long-term-dependency-language-modeling-dataset/)**

Model | Valid perplexity | Test perplexity
---|---|---
`megatron_11b` | 10.64 | 10.54


## Evaluating `megatron_11b` on Wikitext-103

#### 1. Downloading Megatron-11b
```bash
# WARNING: this file is 19GB
wget https://dl.fbaipublicfiles.com/fairseq/models/model_parallel/megatron_11b.tar.gz
tar -xzvf megatron_11b.tar.gz
```

#### 2. Download Wikitext-103
```bash
wget https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-103-raw-v1.zip
unzip wikitext-103-raw-v1.zip
```

#### 3. Detokenize test tokens
Megatron-11b uses a byte-level BPE that expects raw (untokenized) input. Since
the wikitext-103 dataset comes tokenized, we apply a simple detokenization
process to restore the untokenized test set:

```bash
python -m examples.megatron_11b.detok wikitext-103-raw/wiki.test.raw > wikitext-103-raw/wiki.test.detok
```

#### 4. BPE encoding
```bash
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'

python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json encoder.json \
    --vocab-bpe vocab.bpe \
    --inputs "wikitext-103-raw/wiki.test.detok" \
    --outputs "wikitext-103-raw/wiki.test.bpe" \
    --workers 60;
```

#### 5. Fairseq binarize
```bash
fairseq-preprocess \
    --only-source \
    --testpref wikitext-103-raw/wiki.test.bpe \
    --srcdict megatron_11b/dict.txt \
    --destdir wikitext103-bin;
```

#### 6. Evaluating perplexity.
We can now evaluate perplexity on the test set. Note that because we've modified
the test set (via detokenization and BPE), the perplexity reported by
`fairseq-eval-lm` needs to be renormalized.

Compute unnormalized perplexity:

```bash
DATA_PATH=wikitext103-bin/
fairseq-eval-lm \
  $DATA_PATH \
  --path megatron_11b/model.pt \
  --task language_modeling \
  --gen-subset test \
  --batch-size 8 \
  --criterion cross_entropy \
  --context-window 992 \
  --distributed-world-size 8 \
  --model-parallel-size 8;
# Expected PPL (unnormalized_ppl): [8.46]
# Note: the eval command needs to run on 8 GPUs for the released model
```
Renormalizing formula:  `2 ^ ( log_2(unnormalized_PPL) * (270847 / 245566))`.
PPL After normalization: `10.54`

To renormalize the perplexity, we must account for the change in token count
after detokenizing and appling BPE. The formula for this is:
`2 ^ ( log_2(unnormalized_PPL) * (new_token_cnt / orig_token_cnt))`

For the wikitext-103 test set, the original token count is `245566` and the
token count after detokenization and applying BPE is `270847`.

The perplexity after renormalization is:
`2 ^ ( log_2(8.46) * (270847 / 245566)) = 10.54`