File size: 28,678 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import math
import os
import re
import subprocess
from contextlib import redirect_stdout

from fairseq import options
from fairseq_cli import eval_lm, preprocess


def reprocess(fle):
    # takes in a file of generate.py translation generate_output
    # returns a source dict and hypothesis dict, where keys are the ID num (as a string)
    # and values and the corresponding source and translation. There may be several translations
    # per source, so the values for hypothesis_dict are lists.
    # parses output of generate.py

    with open(fle, "r") as f:
        txt = f.read()

    """reprocess generate.py output"""
    p = re.compile(r"[STHP][-]\d+\s*")
    hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)")
    source_dict = {}
    hypothesis_dict = {}
    score_dict = {}
    target_dict = {}
    pos_score_dict = {}
    lines = txt.split("\n")

    for line in lines:
        line += "\n"
        prefix = re.search(p, line)
        if prefix is not None:
            assert len(prefix.group()) > 2, "prefix id not found"
            _, j = prefix.span()
            id_num = prefix.group()[2:]
            id_num = int(id_num)
            line_type = prefix.group()[0]
            if line_type == "H":
                h_txt = line[j:]
                hypo = re.search(hp, h_txt)
                assert (
                    hypo is not None
                ), "regular expression failed to find the hypothesis scoring"
                _, i = hypo.span()
                score = hypo.group()
                if id_num in hypothesis_dict:
                    hypothesis_dict[id_num].append(h_txt[i:])
                    score_dict[id_num].append(float(score))
                else:
                    hypothesis_dict[id_num] = [h_txt[i:]]
                    score_dict[id_num] = [float(score)]

            elif line_type == "S":
                source_dict[id_num] = line[j:]
            elif line_type == "T":
                target_dict[id_num] = line[j:]
            elif line_type == "P":
                pos_scores = (line[j:]).split()
                pos_scores = [float(x) for x in pos_scores]
                if id_num in pos_score_dict:
                    pos_score_dict[id_num].append(pos_scores)
                else:
                    pos_score_dict[id_num] = [pos_scores]

    return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict


def reprocess_nbest(fle):
    """reprocess interactive.py output"""
    with open(fle, "r") as f:
        txt = f.read()

    source_dict = {}
    hypothesis_dict = {}
    score_dict = {}
    target_dict = {}
    pos_score_dict = {}
    lines = txt.split("\n")

    hp = re.compile(r"[-]?\d+[.]?\d+")
    j = -1

    for _i, line in enumerate(lines):
        line += "\n"
        line_type = line[0]

        if line_type == "H":
            hypo = re.search(hp, line)
            _, start_index = hypo.span()
            score = hypo.group()
            if j in score_dict:
                score_dict[j].append(float(score))
                hypothesis_dict[j].append(line[start_index:].strip("\t"))
            else:
                score_dict[j] = [float(score)]
                hypothesis_dict[j] = [line[start_index:].strip("\t")]
        elif line_type == "O":
            j += 1
            source_dict[j] = line[2:]
            # we don't have the targets for interactive.py
            target_dict[j] = "filler"

        elif line_type == "P":
            pos_scores = [float(pos_score) for pos_score in line.split()[1:]]
            if j in pos_score_dict:
                pos_score_dict[j].append(pos_scores)
            else:
                pos_score_dict[j] = [pos_scores]

    assert source_dict.keys() == hypothesis_dict.keys()
    assert source_dict.keys() == pos_score_dict.keys()
    assert source_dict.keys() == score_dict.keys()

    return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict


def write_reprocessed(
    sources,
    hypos,
    targets,
    source_outfile,
    hypo_outfile,
    target_outfile,
    right_to_left=False,
    prefix_len=None,
    bpe_symbol=None,
    target_prefix_frac=None,
    source_prefix_frac=None,
):

    """writes nbest hypothesis for rescoring"""
    assert not (
        prefix_len is not None and target_prefix_frac is not None
    ), "in writing reprocessed, only one type of prefix may be used"
    assert not (
        prefix_len is not None and source_prefix_frac is not None
    ), "in writing reprocessed, only one type of prefix may be used"
    assert not (
        target_prefix_frac is not None and source_prefix_frac is not None
    ), "in writing reprocessed, only one type of prefix may be used"

    with open(source_outfile, "w") as source_file, open(
        hypo_outfile, "w"
    ) as hypo_file, open(target_outfile, "w") as target_file:

        assert len(sources) == len(hypos), "sources and hypos list length mismatch"
        if right_to_left:
            for i in range(len(sources)):
                for j in range(len(hypos[i])):
                    if prefix_len is None:
                        hypo_file.write(make_right_to_left(hypos[i][j]) + "\n")
                    else:
                        raise NotImplementedError()
                    source_file.write(make_right_to_left(sources[i]) + "\n")
                    target_file.write(make_right_to_left(targets[i]) + "\n")
        else:
            for i in sorted(sources.keys()):
                for j in range(len(hypos[i])):
                    if prefix_len is not None:
                        shortened = (
                            get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len)
                            + "\n"
                        )
                        hypo_file.write(shortened)
                        source_file.write(sources[i])
                        target_file.write(targets[i])
                    elif target_prefix_frac is not None:
                        num_words, shortened, num_bpe_tokens = calc_length_from_frac(
                            hypos[i][j], target_prefix_frac, bpe_symbol
                        )
                        shortened += "\n"
                        hypo_file.write(shortened)
                        source_file.write(sources[i])
                        target_file.write(targets[i])
                    elif source_prefix_frac is not None:
                        num_words, shortened, num_bpe_tokensn = calc_length_from_frac(
                            sources[i], source_prefix_frac, bpe_symbol
                        )
                        shortened += "\n"
                        hypo_file.write(hypos[i][j])
                        source_file.write(shortened)
                        target_file.write(targets[i])
                    else:
                        hypo_file.write(hypos[i][j])
                        source_file.write(sources[i])
                        target_file.write(targets[i])


def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol):
    # return number of words, (not bpe tokens) that we want
    no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol)
    len_sen = len(no_bpe_sen.split())

    num_words = math.ceil(len_sen * prefix_frac)
    prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words)
    num_bpe_tokens = len(prefix.split())
    return num_words, prefix, num_bpe_tokens


def get_prefix(sentence, prefix_len):
    """assuming no bpe, gets the prefix of the sentence with prefix_len words"""
    tokens = sentence.strip("\n").split()
    if prefix_len >= len(tokens):
        return sentence.strip("\n")
    else:
        return " ".join(tokens[:prefix_len])


def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len):
    if bpe_symbol is None:
        return get_prefix(sentence, prefix_len)
    else:
        return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len))


def get_prefix_from_len(sentence, bpe_symbol, prefix_len):
    """get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens"""
    bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]])
    if bpe_count == 0:
        return sentence[:prefix_len]
    else:
        return sentence[:prefix_len] + get_prefix_from_len(
            sentence[prefix_len:], bpe_symbol, bpe_count
        )


def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len):
    """given a prefix length in terms of words, return the number of bpe tokens"""
    prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len)
    assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len
    return len(prefix.split(" "))


def make_right_to_left(line):
    tokens = line.split()
    tokens.reverse()
    new_line = " ".join(tokens)
    return new_line


def remove_bpe(line, bpe_symbol):
    line = line.replace("\n", "")
    line = (line + " ").replace(bpe_symbol, "").rstrip()
    return line + ("\n")


def remove_bpe_dict(pred_dict, bpe_symbol):
    new_dict = {}
    for i in pred_dict:
        if type(pred_dict[i]) == list:
            new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]]
            new_dict[i] = new_list
        else:
            new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol)
    return new_dict


def parse_bleu_scoring(line):
    p = re.compile(r"(BLEU4 = )\d+[.]\d+")
    res = re.search(p, line)
    assert res is not None, line
    return float(res.group()[8:])


def get_full_from_prefix(hypo_prefix, hypos):
    """given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix"""
    for hypo in hypos:
        hypo_prefix = hypo_prefix.strip("\n")
        len_prefix = len(hypo_prefix)
        if hypo[:len_prefix] == hypo_prefix:
            return hypo
    # no match found
    raise Exception()


def get_score(
    a,
    b,
    c,
    target_len,
    bitext_score1,
    bitext_score2=None,
    lm_score=None,
    lenpen=None,
    src_len=None,
    tgt_len=None,
    bitext1_backwards=False,
    bitext2_backwards=False,
    normalize=False,
):
    if bitext1_backwards:
        bitext1_norm = src_len
    else:
        bitext1_norm = tgt_len
    if bitext_score2 is not None:
        if bitext2_backwards:
            bitext2_norm = src_len
        else:
            bitext2_norm = tgt_len
    else:
        bitext2_norm = 1
        bitext_score2 = 0
    if normalize:
        score = (
            a * bitext_score1 / bitext1_norm
            + b * bitext_score2 / bitext2_norm
            + c * lm_score / src_len
        )
    else:
        score = a * bitext_score1 + b * bitext_score2 + c * lm_score

    if lenpen is not None:
        score /= (target_len) ** float(lenpen)

    return score


class BitextOutput(object):
    def __init__(
        self,
        output_file,
        backwards,
        right_to_left,
        bpe_symbol,
        prefix_len=None,
        target_prefix_frac=None,
        source_prefix_frac=None,
    ):
        """process output from rescoring"""
        source, hypo, score, target, pos_score = reprocess(output_file)
        if backwards:
            self.hypo_fracs = source_prefix_frac
        else:
            self.hypo_fracs = target_prefix_frac

        # remove length penalty so we can use raw scores
        score, num_bpe_tokens = get_score_from_pos(
            pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards
        )
        source_lengths = {}
        target_lengths = {}

        assert hypo.keys() == source.keys(), "key mismatch"
        if backwards:
            tmp = hypo
            hypo = source
            source = tmp
        for i in source:
            # since we are reranking, there should only be one hypo per source sentence
            if backwards:
                len_src = len(source[i][0].split())
                # record length without <eos>
                if len_src == num_bpe_tokens[i][0] - 1:
                    source_lengths[i] = num_bpe_tokens[i][0] - 1
                else:
                    source_lengths[i] = num_bpe_tokens[i][0]

                target_lengths[i] = len(hypo[i].split())

                source[i] = remove_bpe(source[i][0], bpe_symbol)
                target[i] = remove_bpe(target[i], bpe_symbol)
                hypo[i] = remove_bpe(hypo[i], bpe_symbol)

                score[i] = float(score[i][0])
                pos_score[i] = pos_score[i][0]

            else:
                len_tgt = len(hypo[i][0].split())
                # record length without <eos>
                if len_tgt == num_bpe_tokens[i][0] - 1:
                    target_lengths[i] = num_bpe_tokens[i][0] - 1
                else:
                    target_lengths[i] = num_bpe_tokens[i][0]

                source_lengths[i] = len(source[i].split())

                if right_to_left:
                    source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol)
                    target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol)
                    hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol)
                    score[i] = float(score[i][0])
                    pos_score[i] = pos_score[i][0]
                else:
                    assert (
                        len(hypo[i]) == 1
                    ), "expected only one hypothesis per source sentence"
                    source[i] = remove_bpe(source[i], bpe_symbol)
                    target[i] = remove_bpe(target[i], bpe_symbol)
                    hypo[i] = remove_bpe(hypo[i][0], bpe_symbol)
                    score[i] = float(score[i][0])
                    pos_score[i] = pos_score[i][0]

        self.rescore_source = source
        self.rescore_hypo = hypo
        self.rescore_score = score
        self.rescore_target = target
        self.rescore_pos_score = pos_score
        self.backwards = backwards
        self.right_to_left = right_to_left
        self.target_lengths = target_lengths
        self.source_lengths = source_lengths


class BitextOutputFromGen(object):
    def __init__(
        self,
        predictions_bpe_file,
        bpe_symbol=None,
        nbest=False,
        prefix_len=None,
        target_prefix_frac=None,
    ):
        if nbest:
            (
                pred_source,
                pred_hypo,
                pred_score,
                pred_target,
                pred_pos_score,
            ) = reprocess_nbest(predictions_bpe_file)
        else:
            pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess(
                predictions_bpe_file
            )

        assert len(pred_source) == len(pred_hypo)
        assert len(pred_source) == len(pred_score)
        assert len(pred_source) == len(pred_target)
        assert len(pred_source) == len(pred_pos_score)

        # remove length penalty so we can use raw scores
        pred_score, num_bpe_tokens = get_score_from_pos(
            pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False
        )

        self.source = pred_source
        self.target = pred_target
        self.score = pred_score
        self.pos_score = pred_pos_score
        self.hypo = pred_hypo
        self.target_lengths = {}
        self.source_lengths = {}

        self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol)
        self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol)
        self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol)

        # indexes to match those from the rescoring models
        self.rescore_source = {}
        self.rescore_target = {}
        self.rescore_pos_score = {}
        self.rescore_hypo = {}
        self.rescore_score = {}
        self.num_hypos = {}
        self.backwards = False
        self.right_to_left = False

        index = 0

        for i in sorted(pred_source.keys()):
            for j in range(len(pred_hypo[i])):

                self.target_lengths[index] = len(self.hypo[i][j].split())
                self.source_lengths[index] = len(self.source[i].split())

                self.rescore_source[index] = self.no_bpe_source[i]
                self.rescore_target[index] = self.no_bpe_target[i]
                self.rescore_hypo[index] = self.no_bpe_hypo[i][j]
                self.rescore_score[index] = float(pred_score[i][j])
                self.rescore_pos_score[index] = pred_pos_score[i][j]
                self.num_hypos[index] = len(pred_hypo[i])
                index += 1


def get_score_from_pos(
    pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards
):
    score_dict = {}
    num_bpe_tokens_dict = {}
    assert prefix_len is None or hypo_frac is None
    for key in pos_score_dict:
        score_dict[key] = []
        num_bpe_tokens_dict[key] = []
        for i in range(len(pos_score_dict[key])):
            if prefix_len is not None and not backwards:
                num_bpe_tokens = get_num_bpe_tokens_from_len(
                    hypo_dict[key][i], bpe_symbol, prefix_len
                )
                score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens]))
                num_bpe_tokens_dict[key].append(num_bpe_tokens)
            elif hypo_frac is not None:
                num_words, shortened, hypo_prefix_len = calc_length_from_frac(
                    hypo_dict[key][i], hypo_frac, bpe_symbol
                )
                score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len]))
                num_bpe_tokens_dict[key].append(hypo_prefix_len)
            else:
                score_dict[key].append(sum(pos_score_dict[key][i]))
                num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i]))
    return score_dict, num_bpe_tokens_dict


class LMOutput(object):
    def __init__(
        self,
        lm_score_file,
        lm_dict=None,
        prefix_len=None,
        bpe_symbol=None,
        target_prefix_frac=None,
    ):
        (
            lm_sentences,
            lm_sen_scores,
            lm_sen_pos_scores,
            lm_no_bpe_sentences,
            lm_bpe_tokens,
        ) = parse_lm(
            lm_score_file,
            prefix_len=prefix_len,
            bpe_symbol=bpe_symbol,
            target_prefix_frac=target_prefix_frac,
        )

        self.sentences = lm_sentences
        self.score = lm_sen_scores
        self.pos_score = lm_sen_pos_scores
        self.lm_dict = lm_dict
        self.no_bpe_sentences = lm_no_bpe_sentences
        self.bpe_tokens = lm_bpe_tokens


def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None):
    """parse output of eval_lm"""
    with open(input_file, "r") as f:
        text = f.readlines()
        text = text[7:]
        cleaned_text = text[:-2]

        sentences = {}
        sen_scores = {}
        sen_pos_scores = {}
        no_bpe_sentences = {}
        num_bpe_tokens_dict = {}
        for _i, line in enumerate(cleaned_text):
            tokens = line.split()
            if tokens[0].isdigit():
                line_id = int(tokens[0])
                scores = [float(x[1:-1]) for x in tokens[2::2]]
                sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n"
                if bpe_symbol is not None:
                    # exclude <eos> symbol to match output from generate.py
                    bpe_sen = " ".join(tokens[1::2][:-1]) + "\n"
                    no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol)
                    no_bpe_sentences[line_id] = no_bpe_sen

                if prefix_len is not None:
                    num_bpe_tokens = get_num_bpe_tokens_from_len(
                        bpe_sen, bpe_symbol, prefix_len
                    )
                    sen_scores[line_id] = sum(scores[:num_bpe_tokens])
                    num_bpe_tokens_dict[line_id] = num_bpe_tokens
                elif target_prefix_frac is not None:
                    num_words, shortened, target_prefix_len = calc_length_from_frac(
                        bpe_sen, target_prefix_frac, bpe_symbol
                    )
                    sen_scores[line_id] = sum(scores[:target_prefix_len])
                    num_bpe_tokens_dict[line_id] = target_prefix_len
                else:
                    sen_scores[line_id] = sum(scores)
                    num_bpe_tokens_dict[line_id] = len(scores)

                sen_pos_scores[line_id] = scores

    return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict


def get_directories(
    data_dir_name,
    num_rescore,
    gen_subset,
    fw_name,
    shard_id,
    num_shards,
    sampling=False,
    prefix_len=None,
    target_prefix_frac=None,
    source_prefix_frac=None,
):
    nbest_file_id = (
        "nbest_"
        + str(num_rescore)
        + "_subset_"
        + gen_subset
        + "_fw_name_"
        + fw_name
        + "_shard_"
        + str(shard_id)
        + "_of_"
        + str(num_shards)
    )

    if sampling:
        nbest_file_id += "_sampling"

    # the directory containing all information for this nbest list
    pre_gen = (
        os.path.join(os.path.dirname(__file__))
        + "/rerank_data/"
        + data_dir_name
        + "/"
        + nbest_file_id
    )
    # the directory to store the preprocessed nbest list, for left to right rescoring
    left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed"
    if source_prefix_frac is not None:
        left_to_right_preprocessed_dir = (
            left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac)
        )
    # the directory to store the preprocessed nbest list, for right to left rescoring
    right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed"
    # the directory to store the preprocessed nbest list, for backwards rescoring
    backwards_preprocessed_dir = pre_gen + "/backwards"
    if target_prefix_frac is not None:
        backwards_preprocessed_dir = (
            backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac)
        )
    elif prefix_len is not None:
        backwards_preprocessed_dir = (
            backwards_preprocessed_dir + "/prefix_" + str(prefix_len)
        )

    # the directory to store the preprocessed nbest list, for rescoring with P(T)
    lm_preprocessed_dir = pre_gen + "/lm_preprocessed"

    return (
        pre_gen,
        left_to_right_preprocessed_dir,
        right_to_left_preprocessed_dir,
        backwards_preprocessed_dir,
        lm_preprocessed_dir,
    )


def lm_scoring(
    preprocess_directory,
    bpe_status,
    gen_output,
    pre_gen,
    cur_lm_dict,
    cur_lm_name,
    cur_language_model,
    cur_lm_bpe_code,
    batch_size,
    lm_score_file,
    target_lang,
    source_lang,
    prefix_len=None,
):
    if prefix_len is not None:
        assert (
            bpe_status == "different"
        ), "bpe status must be different to use prefix len"
    if bpe_status == "no bpe":
        # run lm on output without bpe
        write_reprocessed(
            gen_output.no_bpe_source,
            gen_output.no_bpe_hypo,
            gen_output.no_bpe_target,
            pre_gen + "/rescore_data_no_bpe.de",
            pre_gen + "/rescore_data_no_bpe.en",
            pre_gen + "/reference_file_no_bpe",
        )

        preprocess_lm_param = [
            "--only-source",
            "--trainpref",
            pre_gen + "/rescore_data_no_bpe." + target_lang,
            "--srcdict",
            cur_lm_dict,
            "--destdir",
            preprocess_directory,
        ]
        preprocess_parser = options.get_preprocessing_parser()
        input_args = preprocess_parser.parse_args(preprocess_lm_param)
        preprocess.main(input_args)

        eval_lm_param = [
            preprocess_directory,
            "--path",
            cur_language_model,
            "--output-word-probs",
            "--batch-size",
            str(batch_size),
            "--max-tokens",
            "1024",
            "--sample-break-mode",
            "eos",
            "--gen-subset",
            "train",
        ]

        eval_lm_parser = options.get_eval_lm_parser()
        input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)

        with open(lm_score_file, "w") as f:
            with redirect_stdout(f):
                eval_lm.main(input_args)

    elif bpe_status == "shared":
        preprocess_lm_param = [
            "--only-source",
            "--trainpref",
            pre_gen + "/rescore_data." + target_lang,
            "--srcdict",
            cur_lm_dict,
            "--destdir",
            preprocess_directory,
        ]
        preprocess_parser = options.get_preprocessing_parser()
        input_args = preprocess_parser.parse_args(preprocess_lm_param)
        preprocess.main(input_args)

        eval_lm_param = [
            preprocess_directory,
            "--path",
            cur_language_model,
            "--output-word-probs",
            "--batch-size",
            str(batch_size),
            "--sample-break-mode",
            "eos",
            "--gen-subset",
            "train",
        ]

        eval_lm_parser = options.get_eval_lm_parser()
        input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)

        with open(lm_score_file, "w") as f:
            with redirect_stdout(f):
                eval_lm.main(input_args)

    elif bpe_status == "different":
        rescore_file = pre_gen + "/rescore_data_no_bpe"
        rescore_bpe = pre_gen + "/rescore_data_new_bpe"

        rescore_file += "."
        rescore_bpe += "."

        write_reprocessed(
            gen_output.no_bpe_source,
            gen_output.no_bpe_hypo,
            gen_output.no_bpe_target,
            rescore_file + source_lang,
            rescore_file + target_lang,
            pre_gen + "/reference_file_no_bpe",
            bpe_symbol=None,
        )

        # apply LM bpe to nbest list
        bpe_src_param = [
            "-c",
            cur_lm_bpe_code,
            "--input",
            rescore_file + target_lang,
            "--output",
            rescore_bpe + target_lang,
        ]
        subprocess.call(
            [
                "python",
                os.path.join(
                    os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
                ),
            ]
            + bpe_src_param,
            shell=False,
        )
        # uncomment to use fastbpe instead of subword-nmt bpe
        # bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code]
        # subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False)

        preprocess_dir = preprocess_directory

        preprocess_lm_param = [
            "--only-source",
            "--trainpref",
            rescore_bpe + target_lang,
            "--srcdict",
            cur_lm_dict,
            "--destdir",
            preprocess_dir,
        ]
        preprocess_parser = options.get_preprocessing_parser()
        input_args = preprocess_parser.parse_args(preprocess_lm_param)
        preprocess.main(input_args)

        eval_lm_param = [
            preprocess_dir,
            "--path",
            cur_language_model,
            "--output-word-probs",
            "--batch-size",
            str(batch_size),
            "--max-tokens",
            "1024",
            "--sample-break-mode",
            "eos",
            "--gen-subset",
            "train",
        ]

        eval_lm_parser = options.get_eval_lm_parser()
        input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)

        with open(lm_score_file, "w") as f:
            with redirect_stdout(f):
                eval_lm.main(input_args)


def rescore_file_name(
    nbest_dir,
    prefix_len,
    scorer_name,
    lm_file=False,
    target_prefix_frac=None,
    source_prefix_frac=None,
    backwards=None,
):
    if lm_file:
        score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt"
    else:
        score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt"
    if backwards:
        if prefix_len is not None:
            score_file += "prefix_len" + str(prefix_len)
        elif target_prefix_frac is not None:
            score_file += "target_prefix_frac" + str(target_prefix_frac)
    else:
        if source_prefix_frac is not None:
            score_file += "source_prefix_frac" + str(source_prefix_frac)
    return score_file