File size: 5,485 Bytes
650c5f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from typing import Optional
import torch
from torch import Tensor

from examples.simultaneous_translation.utils.functions import (
    exclusive_cumprod,
    prob_check,
    moving_sum,
)


def expected_alignment_from_p_choose(
    p_choose: Tensor,
    padding_mask: Optional[Tensor] = None,
    eps: float = 1e-6
):
    """
    Calculating expected alignment for from stepwise probability

    Reference:
    Online and Linear-Time Attention by Enforcing Monotonic Alignments
    https://arxiv.org/pdf/1704.00784.pdf

    q_ij = (1 − p_{ij−1})q_{ij−1} + a+{i−1j}
    a_ij = p_ij q_ij

    Parallel solution:
    ai = p_i * cumprod(1 − pi) * cumsum(a_i / cumprod(1 − pi))

    ============================================================
    Expected input size
    p_choose: bsz, tgt_len, src_len
    """
    prob_check(p_choose)

    # p_choose: bsz, tgt_len, src_len
    bsz, tgt_len, src_len = p_choose.size()
    dtype = p_choose.dtype

    p_choose = p_choose.float()

    if padding_mask is not None:
        p_choose = p_choose.masked_fill(padding_mask.unsqueeze(1), 0.0)

    # cumprod_1mp : bsz, tgt_len, src_len
    cumprod_1mp = exclusive_cumprod(1 - p_choose, dim=2, eps=eps)
    cumprod_1mp_clamp = torch.clamp(cumprod_1mp, eps, 1.0)

    alpha_0 = p_choose.new_zeros([bsz, 1, src_len])
    alpha_0[:, :, 0] = 1.0

    previous_alpha = [alpha_0]

    for i in range(tgt_len):
        # p_choose: bsz , tgt_len, src_len
        # cumprod_1mp_clamp : bsz, tgt_len, src_len
        # previous_alpha[i]: bsz, 1, src_len
        # alpha_i: bsz, src_len
        alpha_i = (
            p_choose[:, i]
            * cumprod_1mp[:, i]
            * torch.cumsum(
                previous_alpha[i][:, 0] / cumprod_1mp_clamp[:, i], dim=1
            )
        ).clamp(0, 1.0)

        previous_alpha.append(alpha_i.unsqueeze(1))

    # alpha: bsz * num_heads, tgt_len, src_len
    alpha = torch.cat(previous_alpha[1:], dim=1)

    # Mix precision to prevent overflow for fp16
    alpha = alpha.type(dtype)

    prob_check(alpha)

    return alpha


def expected_soft_attention(
    alpha: Tensor,
    soft_energy: Tensor,
    padding_mask: Optional[Tensor] = None,
    chunk_size: Optional[int] = None,
    eps: float = 1e-10
):
    """
    Function to compute expected soft attention for
    monotonic infinite lookback attention from
    expected alignment and soft energy.

    Reference:
    Monotonic Chunkwise Attention
    https://arxiv.org/abs/1712.05382

    Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
    https://arxiv.org/abs/1906.05218

    alpha: bsz, tgt_len, src_len
    soft_energy: bsz, tgt_len, src_len
    padding_mask: bsz, src_len
    left_padding: bool
    """
    if padding_mask is not None:
        alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0)
        soft_energy = soft_energy.masked_fill(
            padding_mask.unsqueeze(1), -float("inf")
        )

    prob_check(alpha)

    dtype = alpha.dtype

    alpha = alpha.float()
    soft_energy = soft_energy.float()

    soft_energy = soft_energy - soft_energy.max(dim=2, keepdim=True)[0]
    exp_soft_energy = torch.exp(soft_energy) + eps

    if chunk_size is not None:
        # Chunkwise
        beta = (
            exp_soft_energy
            * moving_sum(
                alpha / (eps + moving_sum(exp_soft_energy, chunk_size, 1)),
                1, chunk_size
            )
        )
    else:
        # Infinite lookback
        # Notice that infinite lookback is a special case of chunkwise
        # where chunksize = inf
        inner_items = alpha / (eps + torch.cumsum(exp_soft_energy, dim=2))

        beta = (
            exp_soft_energy
            * torch.cumsum(inner_items.flip(dims=[2]), dim=2)
            .flip(dims=[2])
        )

    if padding_mask is not None:
        beta = beta.masked_fill(
            padding_mask.unsqueeze(1).to(torch.bool), 0.0)

    # Mix precision to prevent overflow for fp16
    beta = beta.type(dtype)

    beta = beta.clamp(0, 1)

    prob_check(beta)

    return beta


def mass_preservation(
    alpha: Tensor,
    padding_mask: Optional[Tensor] = None,
    left_padding: bool = False
):
    """
    Function to compute the mass perservation for alpha.
    This means that the residual weights of alpha will be assigned
    to the last token.

    Reference:
    Monotonic Infinite Lookback Attention for Simultaneous Machine Translation
    https://arxiv.org/abs/1906.05218

    alpha: bsz, tgt_len, src_len
    padding_mask: bsz, src_len
    left_padding: bool
    """

    prob_check(alpha)

    if padding_mask is not None:
        if not left_padding:
            assert not padding_mask[:, 0].any(), (
                "Find padding on the beginning of the sequence."
            )
        alpha = alpha.masked_fill(padding_mask.unsqueeze(1), 0.0)

    if left_padding or padding_mask is None:
        residuals = 1 - alpha[:, :, :-1].sum(dim=-1).clamp(0, 1)
        alpha[:, :, -1] = residuals
    else:
        # right padding
        _, tgt_len, src_len = alpha.size()
        residuals = 1 - alpha.sum(dim=-1, keepdim=True).clamp(0, 1)
        src_lens = src_len - padding_mask.sum(dim=1, keepdim=True)
        src_lens = src_lens.expand(-1, tgt_len).contiguous()
        # add back the last value
        residuals += alpha.gather(2, src_lens.unsqueeze(2) - 1)
        alpha = alpha.scatter(2, src_lens.unsqueeze(2) - 1, residuals)

        prob_check(alpha)

    return alpha