Spaces:
Running
Running
File size: 8,334 Bytes
650c5f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Signal processing-based evaluation using waveforms
"""
import numpy as np
import os.path as op
import torchaudio
import tqdm
from tabulate import tabulate
from examples.speech_synthesis.utils import (
gross_pitch_error, voicing_decision_error, f0_frame_error
)
from examples.speech_synthesis.evaluation.eval_sp import load_eval_spec
def difference_function(x, n, tau_max):
"""
Compute difference function of data x. This solution is implemented directly
with Numpy fft.
:param x: audio data
:param n: length of data
:param tau_max: integration window size
:return: difference function
:rtype: list
"""
x = np.array(x, np.float64)
w = x.size
tau_max = min(tau_max, w)
x_cumsum = np.concatenate((np.array([0.]), (x * x).cumsum()))
size = w + tau_max
p2 = (size // 32).bit_length()
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
fc = np.fft.rfft(x, size_pad)
conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
return x_cumsum[w:w - tau_max:-1] + x_cumsum[w] - x_cumsum[:tau_max] - \
2 * conv
def cumulative_mean_normalized_difference_function(df, n):
"""
Compute cumulative mean normalized difference function (CMND).
:param df: Difference function
:param n: length of data
:return: cumulative mean normalized difference function
:rtype: list
"""
# scipy method
cmn_df = df[1:] * range(1, n) / np.cumsum(df[1:]).astype(float)
return np.insert(cmn_df, 0, 1)
def get_pitch(cmdf, tau_min, tau_max, harmo_th=0.1):
"""
Return fundamental period of a frame based on CMND function.
:param cmdf: Cumulative Mean Normalized Difference function
:param tau_min: minimum period for speech
:param tau_max: maximum period for speech
:param harmo_th: harmonicity threshold to determine if it is necessary to
compute pitch frequency
:return: fundamental period if there is values under threshold, 0 otherwise
:rtype: float
"""
tau = tau_min
while tau < tau_max:
if cmdf[tau] < harmo_th:
while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
tau += 1
return tau
tau += 1
return 0 # if unvoiced
def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500,
harmo_thresh=0.1):
"""
Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
https://github.com/NVIDIA/mellotron adaption of
https://github.com/patriceguyot/Yin
:param sig: Audio signal (list of float)
:param sr: sampling rate (int)
:param w_len: size of the analysis window (samples)
:param w_step: size of the lag between two consecutives windows (samples)
:param f0_min: Minimum fundamental frequency that can be detected (hertz)
:param f0_max: Maximum fundamental frequency that can be detected (hertz)
:param harmo_thresh: Threshold of detection. The yalgorithmù return the
first minimum of the CMND function below this threshold.
:returns:
* pitches: list of fundamental frequencies,
* harmonic_rates: list of harmonic rate values for each fundamental
frequency value (= confidence value)
* argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
* times: list of time of each estimation
:rtype: tuple
"""
tau_min = int(sr / f0_max)
tau_max = int(sr / f0_min)
# time values for each analysis window
time_scale = range(0, len(sig) - w_len, w_step)
times = [t/float(sr) for t in time_scale]
frames = [sig[t:t + w_len] for t in time_scale]
pitches = [0.0] * len(time_scale)
harmonic_rates = [0.0] * len(time_scale)
argmins = [0.0] * len(time_scale)
for i, frame in enumerate(frames):
# Compute YIN
df = difference_function(frame, w_len, tau_max)
cm_df = cumulative_mean_normalized_difference_function(df, tau_max)
p = get_pitch(cm_df, tau_min, tau_max, harmo_thresh)
# Get results
if np.argmin(cm_df) > tau_min:
argmins[i] = float(sr / np.argmin(cm_df))
if p != 0: # A pitch was found
pitches[i] = float(sr / p)
harmonic_rates[i] = cm_df[p]
else: # No pitch, but we compute a value of the harmonic rate
harmonic_rates[i] = min(cm_df)
return pitches, harmonic_rates, argmins, times
def extract_f0(samples):
f0_samples = []
for sample in tqdm.tqdm(samples):
if not op.isfile(sample["ref"]) or not op.isfile(sample["syn"]):
f0_samples.append(None)
continue
# assume single channel
yref, sr = torchaudio.load(sample["ref"])
ysyn, _sr = torchaudio.load(sample["syn"])
yref, ysyn = yref[0], ysyn[0]
assert sr == _sr, f"{sr} != {_sr}"
yref_f0 = compute_yin(yref, sr)
ysyn_f0 = compute_yin(ysyn, sr)
f0_samples += [
{
"ref": yref_f0,
"syn": ysyn_f0
}
]
return f0_samples
def eval_f0_error(samples, distortion_fn):
results = []
for sample in tqdm.tqdm(samples):
if sample is None:
results.append(None)
continue
# assume single channel
yref_f, _, _, yref_t = sample["ref"]
ysyn_f, _, _, ysyn_t = sample["syn"]
yref_f = np.array(yref_f)
yref_t = np.array(yref_t)
ysyn_f = np.array(ysyn_f)
ysyn_t = np.array(ysyn_t)
distortion = distortion_fn(yref_t, yref_f, ysyn_t, ysyn_f)
results.append((distortion.item(),
len(yref_f),
len(ysyn_f)
))
return results
def eval_gross_pitch_error(samples):
return eval_f0_error(samples, gross_pitch_error)
def eval_voicing_decision_error(samples):
return eval_f0_error(samples, voicing_decision_error)
def eval_f0_frame_error(samples):
return eval_f0_error(samples, f0_frame_error)
def print_results(results, show_bin):
results = np.array(list(filter(lambda x: x is not None, results)))
np.set_printoptions(precision=3)
def _print_result(results):
res = {
"nutt": len(results),
"error": results[:, 0].mean(),
"std": results[:, 0].std(),
"dur_ref": int(results[:, 1].sum()),
"dur_syn": int(results[:, 2].sum()),
}
print(tabulate([res.values()], res.keys(), floatfmt=".4f"))
print(">>>> ALL")
_print_result(results)
if show_bin:
edges = [0, 200, 400, 600, 800, 1000, 2000, 4000]
for i in range(1, len(edges)):
mask = np.logical_and(results[:, 1] >= edges[i-1],
results[:, 1] < edges[i])
if not mask.any():
continue
bin_results = results[mask]
print(f">>>> ({edges[i-1]}, {edges[i]})")
_print_result(bin_results)
def main(eval_f0, gpe, vde, ffe, show_bin):
samples = load_eval_spec(eval_f0)
if gpe or vde or ffe:
f0_samples = extract_f0(samples)
if gpe:
print("===== Evaluate Gross Pitch Error =====")
results = eval_gross_pitch_error(f0_samples)
print_results(results, show_bin)
if vde:
print("===== Evaluate Voicing Decision Error =====")
results = eval_voicing_decision_error(f0_samples)
print_results(results, show_bin)
if ffe:
print("===== Evaluate F0 Frame Error =====")
results = eval_f0_frame_error(f0_samples)
print_results(results, show_bin)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("eval_f0")
parser.add_argument("--gpe", action="store_true")
parser.add_argument("--vde", action="store_true")
parser.add_argument("--ffe", action="store_true")
parser.add_argument("--show-bin", action="store_true")
args = parser.parse_args()
main(args.eval_f0, args.gpe, args.vde, args.ffe, args.show_bin)
|