Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import argparse | |
import random | |
import numpy as np | |
from fairseq import options | |
from examples.noisychannel import rerank, rerank_options | |
def random_search(args): | |
param_values = [] | |
tuneable_parameters = ["lenpen", "weight1", "weight2", "weight3"] | |
initial_params = [args.lenpen, args.weight1, args.weight2, args.weight3] | |
for i, elem in enumerate(initial_params): | |
if type(elem) is not list: | |
initial_params[i] = [elem] | |
else: | |
initial_params[i] = elem | |
tune_parameters = args.tune_param.copy() | |
for i in range(len(args.tune_param)): | |
assert args.upper_bound[i] >= args.lower_bound[i] | |
index = tuneable_parameters.index(args.tune_param[i]) | |
del tuneable_parameters[index] | |
del initial_params[index] | |
tune_parameters += tuneable_parameters | |
param_values += initial_params | |
random.seed(args.seed) | |
random_params = np.array( | |
[ | |
[ | |
random.uniform(args.lower_bound[i], args.upper_bound[i]) | |
for i in range(len(args.tune_param)) | |
] | |
for k in range(args.num_trials) | |
] | |
) | |
set_params = np.array( | |
[ | |
[initial_params[i][0] for i in range(len(tuneable_parameters))] | |
for k in range(args.num_trials) | |
] | |
) | |
random_params = np.concatenate((random_params, set_params), 1) | |
rerank_args = vars(args).copy() | |
if args.nbest_list: | |
rerank_args["gen_subset"] = "test" | |
else: | |
rerank_args["gen_subset"] = args.tune_subset | |
for k in range(len(tune_parameters)): | |
rerank_args[tune_parameters[k]] = list(random_params[:, k]) | |
if args.share_weights: | |
k = tune_parameters.index("weight2") | |
rerank_args["weight3"] = list(random_params[:, k]) | |
rerank_args = argparse.Namespace(**rerank_args) | |
best_lenpen, best_weight1, best_weight2, best_weight3, best_score = rerank.rerank( | |
rerank_args | |
) | |
rerank_args = vars(args).copy() | |
rerank_args["lenpen"] = [best_lenpen] | |
rerank_args["weight1"] = [best_weight1] | |
rerank_args["weight2"] = [best_weight2] | |
rerank_args["weight3"] = [best_weight3] | |
# write the hypothesis from the valid set from the best trial | |
if args.gen_subset != "valid": | |
rerank_args["gen_subset"] = "valid" | |
rerank_args = argparse.Namespace(**rerank_args) | |
rerank.rerank(rerank_args) | |
# test with the best hyperparameters on gen subset | |
rerank_args = vars(args).copy() | |
rerank_args["gen_subset"] = args.gen_subset | |
rerank_args["lenpen"] = [best_lenpen] | |
rerank_args["weight1"] = [best_weight1] | |
rerank_args["weight2"] = [best_weight2] | |
rerank_args["weight3"] = [best_weight3] | |
rerank_args = argparse.Namespace(**rerank_args) | |
rerank.rerank(rerank_args) | |
def cli_main(): | |
parser = rerank_options.get_tuning_parser() | |
args = options.parse_args_and_arch(parser) | |
random_search(args) | |
if __name__ == "__main__": | |
cli_main() | |