Spaces:
Running
Running
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
import os | |
import re | |
import subprocess | |
from contextlib import redirect_stdout | |
from fairseq import options | |
from fairseq_cli import eval_lm, preprocess | |
def reprocess(fle): | |
# takes in a file of generate.py translation generate_output | |
# returns a source dict and hypothesis dict, where keys are the ID num (as a string) | |
# and values and the corresponding source and translation. There may be several translations | |
# per source, so the values for hypothesis_dict are lists. | |
# parses output of generate.py | |
with open(fle, "r") as f: | |
txt = f.read() | |
"""reprocess generate.py output""" | |
p = re.compile(r"[STHP][-]\d+\s*") | |
hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)") | |
source_dict = {} | |
hypothesis_dict = {} | |
score_dict = {} | |
target_dict = {} | |
pos_score_dict = {} | |
lines = txt.split("\n") | |
for line in lines: | |
line += "\n" | |
prefix = re.search(p, line) | |
if prefix is not None: | |
assert len(prefix.group()) > 2, "prefix id not found" | |
_, j = prefix.span() | |
id_num = prefix.group()[2:] | |
id_num = int(id_num) | |
line_type = prefix.group()[0] | |
if line_type == "H": | |
h_txt = line[j:] | |
hypo = re.search(hp, h_txt) | |
assert ( | |
hypo is not None | |
), "regular expression failed to find the hypothesis scoring" | |
_, i = hypo.span() | |
score = hypo.group() | |
if id_num in hypothesis_dict: | |
hypothesis_dict[id_num].append(h_txt[i:]) | |
score_dict[id_num].append(float(score)) | |
else: | |
hypothesis_dict[id_num] = [h_txt[i:]] | |
score_dict[id_num] = [float(score)] | |
elif line_type == "S": | |
source_dict[id_num] = line[j:] | |
elif line_type == "T": | |
target_dict[id_num] = line[j:] | |
elif line_type == "P": | |
pos_scores = (line[j:]).split() | |
pos_scores = [float(x) for x in pos_scores] | |
if id_num in pos_score_dict: | |
pos_score_dict[id_num].append(pos_scores) | |
else: | |
pos_score_dict[id_num] = [pos_scores] | |
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict | |
def reprocess_nbest(fle): | |
"""reprocess interactive.py output""" | |
with open(fle, "r") as f: | |
txt = f.read() | |
source_dict = {} | |
hypothesis_dict = {} | |
score_dict = {} | |
target_dict = {} | |
pos_score_dict = {} | |
lines = txt.split("\n") | |
hp = re.compile(r"[-]?\d+[.]?\d+") | |
j = -1 | |
for _i, line in enumerate(lines): | |
line += "\n" | |
line_type = line[0] | |
if line_type == "H": | |
hypo = re.search(hp, line) | |
_, start_index = hypo.span() | |
score = hypo.group() | |
if j in score_dict: | |
score_dict[j].append(float(score)) | |
hypothesis_dict[j].append(line[start_index:].strip("\t")) | |
else: | |
score_dict[j] = [float(score)] | |
hypothesis_dict[j] = [line[start_index:].strip("\t")] | |
elif line_type == "O": | |
j += 1 | |
source_dict[j] = line[2:] | |
# we don't have the targets for interactive.py | |
target_dict[j] = "filler" | |
elif line_type == "P": | |
pos_scores = [float(pos_score) for pos_score in line.split()[1:]] | |
if j in pos_score_dict: | |
pos_score_dict[j].append(pos_scores) | |
else: | |
pos_score_dict[j] = [pos_scores] | |
assert source_dict.keys() == hypothesis_dict.keys() | |
assert source_dict.keys() == pos_score_dict.keys() | |
assert source_dict.keys() == score_dict.keys() | |
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict | |
def write_reprocessed( | |
sources, | |
hypos, | |
targets, | |
source_outfile, | |
hypo_outfile, | |
target_outfile, | |
right_to_left=False, | |
prefix_len=None, | |
bpe_symbol=None, | |
target_prefix_frac=None, | |
source_prefix_frac=None, | |
): | |
"""writes nbest hypothesis for rescoring""" | |
assert not ( | |
prefix_len is not None and target_prefix_frac is not None | |
), "in writing reprocessed, only one type of prefix may be used" | |
assert not ( | |
prefix_len is not None and source_prefix_frac is not None | |
), "in writing reprocessed, only one type of prefix may be used" | |
assert not ( | |
target_prefix_frac is not None and source_prefix_frac is not None | |
), "in writing reprocessed, only one type of prefix may be used" | |
with open(source_outfile, "w") as source_file, open( | |
hypo_outfile, "w" | |
) as hypo_file, open(target_outfile, "w") as target_file: | |
assert len(sources) == len(hypos), "sources and hypos list length mismatch" | |
if right_to_left: | |
for i in range(len(sources)): | |
for j in range(len(hypos[i])): | |
if prefix_len is None: | |
hypo_file.write(make_right_to_left(hypos[i][j]) + "\n") | |
else: | |
raise NotImplementedError() | |
source_file.write(make_right_to_left(sources[i]) + "\n") | |
target_file.write(make_right_to_left(targets[i]) + "\n") | |
else: | |
for i in sorted(sources.keys()): | |
for j in range(len(hypos[i])): | |
if prefix_len is not None: | |
shortened = ( | |
get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len) | |
+ "\n" | |
) | |
hypo_file.write(shortened) | |
source_file.write(sources[i]) | |
target_file.write(targets[i]) | |
elif target_prefix_frac is not None: | |
num_words, shortened, num_bpe_tokens = calc_length_from_frac( | |
hypos[i][j], target_prefix_frac, bpe_symbol | |
) | |
shortened += "\n" | |
hypo_file.write(shortened) | |
source_file.write(sources[i]) | |
target_file.write(targets[i]) | |
elif source_prefix_frac is not None: | |
num_words, shortened, num_bpe_tokensn = calc_length_from_frac( | |
sources[i], source_prefix_frac, bpe_symbol | |
) | |
shortened += "\n" | |
hypo_file.write(hypos[i][j]) | |
source_file.write(shortened) | |
target_file.write(targets[i]) | |
else: | |
hypo_file.write(hypos[i][j]) | |
source_file.write(sources[i]) | |
target_file.write(targets[i]) | |
def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol): | |
# return number of words, (not bpe tokens) that we want | |
no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol) | |
len_sen = len(no_bpe_sen.split()) | |
num_words = math.ceil(len_sen * prefix_frac) | |
prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words) | |
num_bpe_tokens = len(prefix.split()) | |
return num_words, prefix, num_bpe_tokens | |
def get_prefix(sentence, prefix_len): | |
"""assuming no bpe, gets the prefix of the sentence with prefix_len words""" | |
tokens = sentence.strip("\n").split() | |
if prefix_len >= len(tokens): | |
return sentence.strip("\n") | |
else: | |
return " ".join(tokens[:prefix_len]) | |
def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len): | |
if bpe_symbol is None: | |
return get_prefix(sentence, prefix_len) | |
else: | |
return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len)) | |
def get_prefix_from_len(sentence, bpe_symbol, prefix_len): | |
"""get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens""" | |
bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]]) | |
if bpe_count == 0: | |
return sentence[:prefix_len] | |
else: | |
return sentence[:prefix_len] + get_prefix_from_len( | |
sentence[prefix_len:], bpe_symbol, bpe_count | |
) | |
def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len): | |
"""given a prefix length in terms of words, return the number of bpe tokens""" | |
prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len) | |
assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len | |
return len(prefix.split(" ")) | |
def make_right_to_left(line): | |
tokens = line.split() | |
tokens.reverse() | |
new_line = " ".join(tokens) | |
return new_line | |
def remove_bpe(line, bpe_symbol): | |
line = line.replace("\n", "") | |
line = (line + " ").replace(bpe_symbol, "").rstrip() | |
return line + ("\n") | |
def remove_bpe_dict(pred_dict, bpe_symbol): | |
new_dict = {} | |
for i in pred_dict: | |
if type(pred_dict[i]) == list: | |
new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]] | |
new_dict[i] = new_list | |
else: | |
new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol) | |
return new_dict | |
def parse_bleu_scoring(line): | |
p = re.compile(r"(BLEU4 = )\d+[.]\d+") | |
res = re.search(p, line) | |
assert res is not None, line | |
return float(res.group()[8:]) | |
def get_full_from_prefix(hypo_prefix, hypos): | |
"""given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix""" | |
for hypo in hypos: | |
hypo_prefix = hypo_prefix.strip("\n") | |
len_prefix = len(hypo_prefix) | |
if hypo[:len_prefix] == hypo_prefix: | |
return hypo | |
# no match found | |
raise Exception() | |
def get_score( | |
a, | |
b, | |
c, | |
target_len, | |
bitext_score1, | |
bitext_score2=None, | |
lm_score=None, | |
lenpen=None, | |
src_len=None, | |
tgt_len=None, | |
bitext1_backwards=False, | |
bitext2_backwards=False, | |
normalize=False, | |
): | |
if bitext1_backwards: | |
bitext1_norm = src_len | |
else: | |
bitext1_norm = tgt_len | |
if bitext_score2 is not None: | |
if bitext2_backwards: | |
bitext2_norm = src_len | |
else: | |
bitext2_norm = tgt_len | |
else: | |
bitext2_norm = 1 | |
bitext_score2 = 0 | |
if normalize: | |
score = ( | |
a * bitext_score1 / bitext1_norm | |
+ b * bitext_score2 / bitext2_norm | |
+ c * lm_score / src_len | |
) | |
else: | |
score = a * bitext_score1 + b * bitext_score2 + c * lm_score | |
if lenpen is not None: | |
score /= (target_len) ** float(lenpen) | |
return score | |
class BitextOutput(object): | |
def __init__( | |
self, | |
output_file, | |
backwards, | |
right_to_left, | |
bpe_symbol, | |
prefix_len=None, | |
target_prefix_frac=None, | |
source_prefix_frac=None, | |
): | |
"""process output from rescoring""" | |
source, hypo, score, target, pos_score = reprocess(output_file) | |
if backwards: | |
self.hypo_fracs = source_prefix_frac | |
else: | |
self.hypo_fracs = target_prefix_frac | |
# remove length penalty so we can use raw scores | |
score, num_bpe_tokens = get_score_from_pos( | |
pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards | |
) | |
source_lengths = {} | |
target_lengths = {} | |
assert hypo.keys() == source.keys(), "key mismatch" | |
if backwards: | |
tmp = hypo | |
hypo = source | |
source = tmp | |
for i in source: | |
# since we are reranking, there should only be one hypo per source sentence | |
if backwards: | |
len_src = len(source[i][0].split()) | |
# record length without <eos> | |
if len_src == num_bpe_tokens[i][0] - 1: | |
source_lengths[i] = num_bpe_tokens[i][0] - 1 | |
else: | |
source_lengths[i] = num_bpe_tokens[i][0] | |
target_lengths[i] = len(hypo[i].split()) | |
source[i] = remove_bpe(source[i][0], bpe_symbol) | |
target[i] = remove_bpe(target[i], bpe_symbol) | |
hypo[i] = remove_bpe(hypo[i], bpe_symbol) | |
score[i] = float(score[i][0]) | |
pos_score[i] = pos_score[i][0] | |
else: | |
len_tgt = len(hypo[i][0].split()) | |
# record length without <eos> | |
if len_tgt == num_bpe_tokens[i][0] - 1: | |
target_lengths[i] = num_bpe_tokens[i][0] - 1 | |
else: | |
target_lengths[i] = num_bpe_tokens[i][0] | |
source_lengths[i] = len(source[i].split()) | |
if right_to_left: | |
source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol) | |
target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol) | |
hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol) | |
score[i] = float(score[i][0]) | |
pos_score[i] = pos_score[i][0] | |
else: | |
assert ( | |
len(hypo[i]) == 1 | |
), "expected only one hypothesis per source sentence" | |
source[i] = remove_bpe(source[i], bpe_symbol) | |
target[i] = remove_bpe(target[i], bpe_symbol) | |
hypo[i] = remove_bpe(hypo[i][0], bpe_symbol) | |
score[i] = float(score[i][0]) | |
pos_score[i] = pos_score[i][0] | |
self.rescore_source = source | |
self.rescore_hypo = hypo | |
self.rescore_score = score | |
self.rescore_target = target | |
self.rescore_pos_score = pos_score | |
self.backwards = backwards | |
self.right_to_left = right_to_left | |
self.target_lengths = target_lengths | |
self.source_lengths = source_lengths | |
class BitextOutputFromGen(object): | |
def __init__( | |
self, | |
predictions_bpe_file, | |
bpe_symbol=None, | |
nbest=False, | |
prefix_len=None, | |
target_prefix_frac=None, | |
): | |
if nbest: | |
( | |
pred_source, | |
pred_hypo, | |
pred_score, | |
pred_target, | |
pred_pos_score, | |
) = reprocess_nbest(predictions_bpe_file) | |
else: | |
pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess( | |
predictions_bpe_file | |
) | |
assert len(pred_source) == len(pred_hypo) | |
assert len(pred_source) == len(pred_score) | |
assert len(pred_source) == len(pred_target) | |
assert len(pred_source) == len(pred_pos_score) | |
# remove length penalty so we can use raw scores | |
pred_score, num_bpe_tokens = get_score_from_pos( | |
pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False | |
) | |
self.source = pred_source | |
self.target = pred_target | |
self.score = pred_score | |
self.pos_score = pred_pos_score | |
self.hypo = pred_hypo | |
self.target_lengths = {} | |
self.source_lengths = {} | |
self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol) | |
self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol) | |
self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol) | |
# indexes to match those from the rescoring models | |
self.rescore_source = {} | |
self.rescore_target = {} | |
self.rescore_pos_score = {} | |
self.rescore_hypo = {} | |
self.rescore_score = {} | |
self.num_hypos = {} | |
self.backwards = False | |
self.right_to_left = False | |
index = 0 | |
for i in sorted(pred_source.keys()): | |
for j in range(len(pred_hypo[i])): | |
self.target_lengths[index] = len(self.hypo[i][j].split()) | |
self.source_lengths[index] = len(self.source[i].split()) | |
self.rescore_source[index] = self.no_bpe_source[i] | |
self.rescore_target[index] = self.no_bpe_target[i] | |
self.rescore_hypo[index] = self.no_bpe_hypo[i][j] | |
self.rescore_score[index] = float(pred_score[i][j]) | |
self.rescore_pos_score[index] = pred_pos_score[i][j] | |
self.num_hypos[index] = len(pred_hypo[i]) | |
index += 1 | |
def get_score_from_pos( | |
pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards | |
): | |
score_dict = {} | |
num_bpe_tokens_dict = {} | |
assert prefix_len is None or hypo_frac is None | |
for key in pos_score_dict: | |
score_dict[key] = [] | |
num_bpe_tokens_dict[key] = [] | |
for i in range(len(pos_score_dict[key])): | |
if prefix_len is not None and not backwards: | |
num_bpe_tokens = get_num_bpe_tokens_from_len( | |
hypo_dict[key][i], bpe_symbol, prefix_len | |
) | |
score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens])) | |
num_bpe_tokens_dict[key].append(num_bpe_tokens) | |
elif hypo_frac is not None: | |
num_words, shortened, hypo_prefix_len = calc_length_from_frac( | |
hypo_dict[key][i], hypo_frac, bpe_symbol | |
) | |
score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len])) | |
num_bpe_tokens_dict[key].append(hypo_prefix_len) | |
else: | |
score_dict[key].append(sum(pos_score_dict[key][i])) | |
num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i])) | |
return score_dict, num_bpe_tokens_dict | |
class LMOutput(object): | |
def __init__( | |
self, | |
lm_score_file, | |
lm_dict=None, | |
prefix_len=None, | |
bpe_symbol=None, | |
target_prefix_frac=None, | |
): | |
( | |
lm_sentences, | |
lm_sen_scores, | |
lm_sen_pos_scores, | |
lm_no_bpe_sentences, | |
lm_bpe_tokens, | |
) = parse_lm( | |
lm_score_file, | |
prefix_len=prefix_len, | |
bpe_symbol=bpe_symbol, | |
target_prefix_frac=target_prefix_frac, | |
) | |
self.sentences = lm_sentences | |
self.score = lm_sen_scores | |
self.pos_score = lm_sen_pos_scores | |
self.lm_dict = lm_dict | |
self.no_bpe_sentences = lm_no_bpe_sentences | |
self.bpe_tokens = lm_bpe_tokens | |
def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None): | |
"""parse output of eval_lm""" | |
with open(input_file, "r") as f: | |
text = f.readlines() | |
text = text[7:] | |
cleaned_text = text[:-2] | |
sentences = {} | |
sen_scores = {} | |
sen_pos_scores = {} | |
no_bpe_sentences = {} | |
num_bpe_tokens_dict = {} | |
for _i, line in enumerate(cleaned_text): | |
tokens = line.split() | |
if tokens[0].isdigit(): | |
line_id = int(tokens[0]) | |
scores = [float(x[1:-1]) for x in tokens[2::2]] | |
sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n" | |
if bpe_symbol is not None: | |
# exclude <eos> symbol to match output from generate.py | |
bpe_sen = " ".join(tokens[1::2][:-1]) + "\n" | |
no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol) | |
no_bpe_sentences[line_id] = no_bpe_sen | |
if prefix_len is not None: | |
num_bpe_tokens = get_num_bpe_tokens_from_len( | |
bpe_sen, bpe_symbol, prefix_len | |
) | |
sen_scores[line_id] = sum(scores[:num_bpe_tokens]) | |
num_bpe_tokens_dict[line_id] = num_bpe_tokens | |
elif target_prefix_frac is not None: | |
num_words, shortened, target_prefix_len = calc_length_from_frac( | |
bpe_sen, target_prefix_frac, bpe_symbol | |
) | |
sen_scores[line_id] = sum(scores[:target_prefix_len]) | |
num_bpe_tokens_dict[line_id] = target_prefix_len | |
else: | |
sen_scores[line_id] = sum(scores) | |
num_bpe_tokens_dict[line_id] = len(scores) | |
sen_pos_scores[line_id] = scores | |
return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict | |
def get_directories( | |
data_dir_name, | |
num_rescore, | |
gen_subset, | |
fw_name, | |
shard_id, | |
num_shards, | |
sampling=False, | |
prefix_len=None, | |
target_prefix_frac=None, | |
source_prefix_frac=None, | |
): | |
nbest_file_id = ( | |
"nbest_" | |
+ str(num_rescore) | |
+ "_subset_" | |
+ gen_subset | |
+ "_fw_name_" | |
+ fw_name | |
+ "_shard_" | |
+ str(shard_id) | |
+ "_of_" | |
+ str(num_shards) | |
) | |
if sampling: | |
nbest_file_id += "_sampling" | |
# the directory containing all information for this nbest list | |
pre_gen = ( | |
os.path.join(os.path.dirname(__file__)) | |
+ "/rerank_data/" | |
+ data_dir_name | |
+ "/" | |
+ nbest_file_id | |
) | |
# the directory to store the preprocessed nbest list, for left to right rescoring | |
left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed" | |
if source_prefix_frac is not None: | |
left_to_right_preprocessed_dir = ( | |
left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac) | |
) | |
# the directory to store the preprocessed nbest list, for right to left rescoring | |
right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed" | |
# the directory to store the preprocessed nbest list, for backwards rescoring | |
backwards_preprocessed_dir = pre_gen + "/backwards" | |
if target_prefix_frac is not None: | |
backwards_preprocessed_dir = ( | |
backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac) | |
) | |
elif prefix_len is not None: | |
backwards_preprocessed_dir = ( | |
backwards_preprocessed_dir + "/prefix_" + str(prefix_len) | |
) | |
# the directory to store the preprocessed nbest list, for rescoring with P(T) | |
lm_preprocessed_dir = pre_gen + "/lm_preprocessed" | |
return ( | |
pre_gen, | |
left_to_right_preprocessed_dir, | |
right_to_left_preprocessed_dir, | |
backwards_preprocessed_dir, | |
lm_preprocessed_dir, | |
) | |
def lm_scoring( | |
preprocess_directory, | |
bpe_status, | |
gen_output, | |
pre_gen, | |
cur_lm_dict, | |
cur_lm_name, | |
cur_language_model, | |
cur_lm_bpe_code, | |
batch_size, | |
lm_score_file, | |
target_lang, | |
source_lang, | |
prefix_len=None, | |
): | |
if prefix_len is not None: | |
assert ( | |
bpe_status == "different" | |
), "bpe status must be different to use prefix len" | |
if bpe_status == "no bpe": | |
# run lm on output without bpe | |
write_reprocessed( | |
gen_output.no_bpe_source, | |
gen_output.no_bpe_hypo, | |
gen_output.no_bpe_target, | |
pre_gen + "/rescore_data_no_bpe.de", | |
pre_gen + "/rescore_data_no_bpe.en", | |
pre_gen + "/reference_file_no_bpe", | |
) | |
preprocess_lm_param = [ | |
"--only-source", | |
"--trainpref", | |
pre_gen + "/rescore_data_no_bpe." + target_lang, | |
"--srcdict", | |
cur_lm_dict, | |
"--destdir", | |
preprocess_directory, | |
] | |
preprocess_parser = options.get_preprocessing_parser() | |
input_args = preprocess_parser.parse_args(preprocess_lm_param) | |
preprocess.main(input_args) | |
eval_lm_param = [ | |
preprocess_directory, | |
"--path", | |
cur_language_model, | |
"--output-word-probs", | |
"--batch-size", | |
str(batch_size), | |
"--max-tokens", | |
"1024", | |
"--sample-break-mode", | |
"eos", | |
"--gen-subset", | |
"train", | |
] | |
eval_lm_parser = options.get_eval_lm_parser() | |
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) | |
with open(lm_score_file, "w") as f: | |
with redirect_stdout(f): | |
eval_lm.main(input_args) | |
elif bpe_status == "shared": | |
preprocess_lm_param = [ | |
"--only-source", | |
"--trainpref", | |
pre_gen + "/rescore_data." + target_lang, | |
"--srcdict", | |
cur_lm_dict, | |
"--destdir", | |
preprocess_directory, | |
] | |
preprocess_parser = options.get_preprocessing_parser() | |
input_args = preprocess_parser.parse_args(preprocess_lm_param) | |
preprocess.main(input_args) | |
eval_lm_param = [ | |
preprocess_directory, | |
"--path", | |
cur_language_model, | |
"--output-word-probs", | |
"--batch-size", | |
str(batch_size), | |
"--sample-break-mode", | |
"eos", | |
"--gen-subset", | |
"train", | |
] | |
eval_lm_parser = options.get_eval_lm_parser() | |
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) | |
with open(lm_score_file, "w") as f: | |
with redirect_stdout(f): | |
eval_lm.main(input_args) | |
elif bpe_status == "different": | |
rescore_file = pre_gen + "/rescore_data_no_bpe" | |
rescore_bpe = pre_gen + "/rescore_data_new_bpe" | |
rescore_file += "." | |
rescore_bpe += "." | |
write_reprocessed( | |
gen_output.no_bpe_source, | |
gen_output.no_bpe_hypo, | |
gen_output.no_bpe_target, | |
rescore_file + source_lang, | |
rescore_file + target_lang, | |
pre_gen + "/reference_file_no_bpe", | |
bpe_symbol=None, | |
) | |
# apply LM bpe to nbest list | |
bpe_src_param = [ | |
"-c", | |
cur_lm_bpe_code, | |
"--input", | |
rescore_file + target_lang, | |
"--output", | |
rescore_bpe + target_lang, | |
] | |
subprocess.call( | |
[ | |
"python", | |
os.path.join( | |
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py" | |
), | |
] | |
+ bpe_src_param, | |
shell=False, | |
) | |
# uncomment to use fastbpe instead of subword-nmt bpe | |
# bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code] | |
# subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False) | |
preprocess_dir = preprocess_directory | |
preprocess_lm_param = [ | |
"--only-source", | |
"--trainpref", | |
rescore_bpe + target_lang, | |
"--srcdict", | |
cur_lm_dict, | |
"--destdir", | |
preprocess_dir, | |
] | |
preprocess_parser = options.get_preprocessing_parser() | |
input_args = preprocess_parser.parse_args(preprocess_lm_param) | |
preprocess.main(input_args) | |
eval_lm_param = [ | |
preprocess_dir, | |
"--path", | |
cur_language_model, | |
"--output-word-probs", | |
"--batch-size", | |
str(batch_size), | |
"--max-tokens", | |
"1024", | |
"--sample-break-mode", | |
"eos", | |
"--gen-subset", | |
"train", | |
] | |
eval_lm_parser = options.get_eval_lm_parser() | |
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param) | |
with open(lm_score_file, "w") as f: | |
with redirect_stdout(f): | |
eval_lm.main(input_args) | |
def rescore_file_name( | |
nbest_dir, | |
prefix_len, | |
scorer_name, | |
lm_file=False, | |
target_prefix_frac=None, | |
source_prefix_frac=None, | |
backwards=None, | |
): | |
if lm_file: | |
score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt" | |
else: | |
score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt" | |
if backwards: | |
if prefix_len is not None: | |
score_file += "prefix_len" + str(prefix_len) | |
elif target_prefix_frac is not None: | |
score_file += "target_prefix_frac" + str(target_prefix_frac) | |
else: | |
if source_prefix_frac is not None: | |
score_file += "source_prefix_frac" + str(source_prefix_frac) | |
return score_file | |