jiang
init commit
650c5f6
raw
history blame
28.7 kB
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import math
import os
import re
import subprocess
from contextlib import redirect_stdout
from fairseq import options
from fairseq_cli import eval_lm, preprocess
def reprocess(fle):
# takes in a file of generate.py translation generate_output
# returns a source dict and hypothesis dict, where keys are the ID num (as a string)
# and values and the corresponding source and translation. There may be several translations
# per source, so the values for hypothesis_dict are lists.
# parses output of generate.py
with open(fle, "r") as f:
txt = f.read()
"""reprocess generate.py output"""
p = re.compile(r"[STHP][-]\d+\s*")
hp = re.compile(r"(\s*[-]?\d+[.]?\d+\s*)|(\s*(-inf)\s*)")
source_dict = {}
hypothesis_dict = {}
score_dict = {}
target_dict = {}
pos_score_dict = {}
lines = txt.split("\n")
for line in lines:
line += "\n"
prefix = re.search(p, line)
if prefix is not None:
assert len(prefix.group()) > 2, "prefix id not found"
_, j = prefix.span()
id_num = prefix.group()[2:]
id_num = int(id_num)
line_type = prefix.group()[0]
if line_type == "H":
h_txt = line[j:]
hypo = re.search(hp, h_txt)
assert (
hypo is not None
), "regular expression failed to find the hypothesis scoring"
_, i = hypo.span()
score = hypo.group()
if id_num in hypothesis_dict:
hypothesis_dict[id_num].append(h_txt[i:])
score_dict[id_num].append(float(score))
else:
hypothesis_dict[id_num] = [h_txt[i:]]
score_dict[id_num] = [float(score)]
elif line_type == "S":
source_dict[id_num] = line[j:]
elif line_type == "T":
target_dict[id_num] = line[j:]
elif line_type == "P":
pos_scores = (line[j:]).split()
pos_scores = [float(x) for x in pos_scores]
if id_num in pos_score_dict:
pos_score_dict[id_num].append(pos_scores)
else:
pos_score_dict[id_num] = [pos_scores]
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
def reprocess_nbest(fle):
"""reprocess interactive.py output"""
with open(fle, "r") as f:
txt = f.read()
source_dict = {}
hypothesis_dict = {}
score_dict = {}
target_dict = {}
pos_score_dict = {}
lines = txt.split("\n")
hp = re.compile(r"[-]?\d+[.]?\d+")
j = -1
for _i, line in enumerate(lines):
line += "\n"
line_type = line[0]
if line_type == "H":
hypo = re.search(hp, line)
_, start_index = hypo.span()
score = hypo.group()
if j in score_dict:
score_dict[j].append(float(score))
hypothesis_dict[j].append(line[start_index:].strip("\t"))
else:
score_dict[j] = [float(score)]
hypothesis_dict[j] = [line[start_index:].strip("\t")]
elif line_type == "O":
j += 1
source_dict[j] = line[2:]
# we don't have the targets for interactive.py
target_dict[j] = "filler"
elif line_type == "P":
pos_scores = [float(pos_score) for pos_score in line.split()[1:]]
if j in pos_score_dict:
pos_score_dict[j].append(pos_scores)
else:
pos_score_dict[j] = [pos_scores]
assert source_dict.keys() == hypothesis_dict.keys()
assert source_dict.keys() == pos_score_dict.keys()
assert source_dict.keys() == score_dict.keys()
return source_dict, hypothesis_dict, score_dict, target_dict, pos_score_dict
def write_reprocessed(
sources,
hypos,
targets,
source_outfile,
hypo_outfile,
target_outfile,
right_to_left=False,
prefix_len=None,
bpe_symbol=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
"""writes nbest hypothesis for rescoring"""
assert not (
prefix_len is not None and target_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
assert not (
prefix_len is not None and source_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
assert not (
target_prefix_frac is not None and source_prefix_frac is not None
), "in writing reprocessed, only one type of prefix may be used"
with open(source_outfile, "w") as source_file, open(
hypo_outfile, "w"
) as hypo_file, open(target_outfile, "w") as target_file:
assert len(sources) == len(hypos), "sources and hypos list length mismatch"
if right_to_left:
for i in range(len(sources)):
for j in range(len(hypos[i])):
if prefix_len is None:
hypo_file.write(make_right_to_left(hypos[i][j]) + "\n")
else:
raise NotImplementedError()
source_file.write(make_right_to_left(sources[i]) + "\n")
target_file.write(make_right_to_left(targets[i]) + "\n")
else:
for i in sorted(sources.keys()):
for j in range(len(hypos[i])):
if prefix_len is not None:
shortened = (
get_prefix_no_bpe(hypos[i][j], bpe_symbol, prefix_len)
+ "\n"
)
hypo_file.write(shortened)
source_file.write(sources[i])
target_file.write(targets[i])
elif target_prefix_frac is not None:
num_words, shortened, num_bpe_tokens = calc_length_from_frac(
hypos[i][j], target_prefix_frac, bpe_symbol
)
shortened += "\n"
hypo_file.write(shortened)
source_file.write(sources[i])
target_file.write(targets[i])
elif source_prefix_frac is not None:
num_words, shortened, num_bpe_tokensn = calc_length_from_frac(
sources[i], source_prefix_frac, bpe_symbol
)
shortened += "\n"
hypo_file.write(hypos[i][j])
source_file.write(shortened)
target_file.write(targets[i])
else:
hypo_file.write(hypos[i][j])
source_file.write(sources[i])
target_file.write(targets[i])
def calc_length_from_frac(bpe_sentence, prefix_frac, bpe_symbol):
# return number of words, (not bpe tokens) that we want
no_bpe_sen = remove_bpe(bpe_sentence, bpe_symbol)
len_sen = len(no_bpe_sen.split())
num_words = math.ceil(len_sen * prefix_frac)
prefix = get_prefix_no_bpe(bpe_sentence, bpe_symbol, num_words)
num_bpe_tokens = len(prefix.split())
return num_words, prefix, num_bpe_tokens
def get_prefix(sentence, prefix_len):
"""assuming no bpe, gets the prefix of the sentence with prefix_len words"""
tokens = sentence.strip("\n").split()
if prefix_len >= len(tokens):
return sentence.strip("\n")
else:
return " ".join(tokens[:prefix_len])
def get_prefix_no_bpe(sentence, bpe_symbol, prefix_len):
if bpe_symbol is None:
return get_prefix(sentence, prefix_len)
else:
return " ".join(get_prefix_from_len(sentence.split(), bpe_symbol, prefix_len))
def get_prefix_from_len(sentence, bpe_symbol, prefix_len):
"""get the prefix of sentence with bpe, with prefix len in terms of words, not bpe tokens"""
bpe_count = sum([bpe_symbol.strip(" ") in t for t in sentence[:prefix_len]])
if bpe_count == 0:
return sentence[:prefix_len]
else:
return sentence[:prefix_len] + get_prefix_from_len(
sentence[prefix_len:], bpe_symbol, bpe_count
)
def get_num_bpe_tokens_from_len(sentence, bpe_symbol, prefix_len):
"""given a prefix length in terms of words, return the number of bpe tokens"""
prefix = get_prefix_no_bpe(sentence, bpe_symbol, prefix_len)
assert len(remove_bpe(prefix, bpe_symbol).split()) <= prefix_len
return len(prefix.split(" "))
def make_right_to_left(line):
tokens = line.split()
tokens.reverse()
new_line = " ".join(tokens)
return new_line
def remove_bpe(line, bpe_symbol):
line = line.replace("\n", "")
line = (line + " ").replace(bpe_symbol, "").rstrip()
return line + ("\n")
def remove_bpe_dict(pred_dict, bpe_symbol):
new_dict = {}
for i in pred_dict:
if type(pred_dict[i]) == list:
new_list = [remove_bpe(elem, bpe_symbol) for elem in pred_dict[i]]
new_dict[i] = new_list
else:
new_dict[i] = remove_bpe(pred_dict[i], bpe_symbol)
return new_dict
def parse_bleu_scoring(line):
p = re.compile(r"(BLEU4 = )\d+[.]\d+")
res = re.search(p, line)
assert res is not None, line
return float(res.group()[8:])
def get_full_from_prefix(hypo_prefix, hypos):
"""given a hypo prefix, recover the first hypo from the list of complete hypos beginning with that prefix"""
for hypo in hypos:
hypo_prefix = hypo_prefix.strip("\n")
len_prefix = len(hypo_prefix)
if hypo[:len_prefix] == hypo_prefix:
return hypo
# no match found
raise Exception()
def get_score(
a,
b,
c,
target_len,
bitext_score1,
bitext_score2=None,
lm_score=None,
lenpen=None,
src_len=None,
tgt_len=None,
bitext1_backwards=False,
bitext2_backwards=False,
normalize=False,
):
if bitext1_backwards:
bitext1_norm = src_len
else:
bitext1_norm = tgt_len
if bitext_score2 is not None:
if bitext2_backwards:
bitext2_norm = src_len
else:
bitext2_norm = tgt_len
else:
bitext2_norm = 1
bitext_score2 = 0
if normalize:
score = (
a * bitext_score1 / bitext1_norm
+ b * bitext_score2 / bitext2_norm
+ c * lm_score / src_len
)
else:
score = a * bitext_score1 + b * bitext_score2 + c * lm_score
if lenpen is not None:
score /= (target_len) ** float(lenpen)
return score
class BitextOutput(object):
def __init__(
self,
output_file,
backwards,
right_to_left,
bpe_symbol,
prefix_len=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
"""process output from rescoring"""
source, hypo, score, target, pos_score = reprocess(output_file)
if backwards:
self.hypo_fracs = source_prefix_frac
else:
self.hypo_fracs = target_prefix_frac
# remove length penalty so we can use raw scores
score, num_bpe_tokens = get_score_from_pos(
pos_score, prefix_len, hypo, bpe_symbol, self.hypo_fracs, backwards
)
source_lengths = {}
target_lengths = {}
assert hypo.keys() == source.keys(), "key mismatch"
if backwards:
tmp = hypo
hypo = source
source = tmp
for i in source:
# since we are reranking, there should only be one hypo per source sentence
if backwards:
len_src = len(source[i][0].split())
# record length without <eos>
if len_src == num_bpe_tokens[i][0] - 1:
source_lengths[i] = num_bpe_tokens[i][0] - 1
else:
source_lengths[i] = num_bpe_tokens[i][0]
target_lengths[i] = len(hypo[i].split())
source[i] = remove_bpe(source[i][0], bpe_symbol)
target[i] = remove_bpe(target[i], bpe_symbol)
hypo[i] = remove_bpe(hypo[i], bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
else:
len_tgt = len(hypo[i][0].split())
# record length without <eos>
if len_tgt == num_bpe_tokens[i][0] - 1:
target_lengths[i] = num_bpe_tokens[i][0] - 1
else:
target_lengths[i] = num_bpe_tokens[i][0]
source_lengths[i] = len(source[i].split())
if right_to_left:
source[i] = remove_bpe(make_right_to_left(source[i]), bpe_symbol)
target[i] = remove_bpe(make_right_to_left(target[i]), bpe_symbol)
hypo[i] = remove_bpe(make_right_to_left(hypo[i][0]), bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
else:
assert (
len(hypo[i]) == 1
), "expected only one hypothesis per source sentence"
source[i] = remove_bpe(source[i], bpe_symbol)
target[i] = remove_bpe(target[i], bpe_symbol)
hypo[i] = remove_bpe(hypo[i][0], bpe_symbol)
score[i] = float(score[i][0])
pos_score[i] = pos_score[i][0]
self.rescore_source = source
self.rescore_hypo = hypo
self.rescore_score = score
self.rescore_target = target
self.rescore_pos_score = pos_score
self.backwards = backwards
self.right_to_left = right_to_left
self.target_lengths = target_lengths
self.source_lengths = source_lengths
class BitextOutputFromGen(object):
def __init__(
self,
predictions_bpe_file,
bpe_symbol=None,
nbest=False,
prefix_len=None,
target_prefix_frac=None,
):
if nbest:
(
pred_source,
pred_hypo,
pred_score,
pred_target,
pred_pos_score,
) = reprocess_nbest(predictions_bpe_file)
else:
pred_source, pred_hypo, pred_score, pred_target, pred_pos_score = reprocess(
predictions_bpe_file
)
assert len(pred_source) == len(pred_hypo)
assert len(pred_source) == len(pred_score)
assert len(pred_source) == len(pred_target)
assert len(pred_source) == len(pred_pos_score)
# remove length penalty so we can use raw scores
pred_score, num_bpe_tokens = get_score_from_pos(
pred_pos_score, prefix_len, pred_hypo, bpe_symbol, target_prefix_frac, False
)
self.source = pred_source
self.target = pred_target
self.score = pred_score
self.pos_score = pred_pos_score
self.hypo = pred_hypo
self.target_lengths = {}
self.source_lengths = {}
self.no_bpe_source = remove_bpe_dict(pred_source.copy(), bpe_symbol)
self.no_bpe_hypo = remove_bpe_dict(pred_hypo.copy(), bpe_symbol)
self.no_bpe_target = remove_bpe_dict(pred_target.copy(), bpe_symbol)
# indexes to match those from the rescoring models
self.rescore_source = {}
self.rescore_target = {}
self.rescore_pos_score = {}
self.rescore_hypo = {}
self.rescore_score = {}
self.num_hypos = {}
self.backwards = False
self.right_to_left = False
index = 0
for i in sorted(pred_source.keys()):
for j in range(len(pred_hypo[i])):
self.target_lengths[index] = len(self.hypo[i][j].split())
self.source_lengths[index] = len(self.source[i].split())
self.rescore_source[index] = self.no_bpe_source[i]
self.rescore_target[index] = self.no_bpe_target[i]
self.rescore_hypo[index] = self.no_bpe_hypo[i][j]
self.rescore_score[index] = float(pred_score[i][j])
self.rescore_pos_score[index] = pred_pos_score[i][j]
self.num_hypos[index] = len(pred_hypo[i])
index += 1
def get_score_from_pos(
pos_score_dict, prefix_len, hypo_dict, bpe_symbol, hypo_frac, backwards
):
score_dict = {}
num_bpe_tokens_dict = {}
assert prefix_len is None or hypo_frac is None
for key in pos_score_dict:
score_dict[key] = []
num_bpe_tokens_dict[key] = []
for i in range(len(pos_score_dict[key])):
if prefix_len is not None and not backwards:
num_bpe_tokens = get_num_bpe_tokens_from_len(
hypo_dict[key][i], bpe_symbol, prefix_len
)
score_dict[key].append(sum(pos_score_dict[key][i][:num_bpe_tokens]))
num_bpe_tokens_dict[key].append(num_bpe_tokens)
elif hypo_frac is not None:
num_words, shortened, hypo_prefix_len = calc_length_from_frac(
hypo_dict[key][i], hypo_frac, bpe_symbol
)
score_dict[key].append(sum(pos_score_dict[key][i][:hypo_prefix_len]))
num_bpe_tokens_dict[key].append(hypo_prefix_len)
else:
score_dict[key].append(sum(pos_score_dict[key][i]))
num_bpe_tokens_dict[key].append(len(pos_score_dict[key][i]))
return score_dict, num_bpe_tokens_dict
class LMOutput(object):
def __init__(
self,
lm_score_file,
lm_dict=None,
prefix_len=None,
bpe_symbol=None,
target_prefix_frac=None,
):
(
lm_sentences,
lm_sen_scores,
lm_sen_pos_scores,
lm_no_bpe_sentences,
lm_bpe_tokens,
) = parse_lm(
lm_score_file,
prefix_len=prefix_len,
bpe_symbol=bpe_symbol,
target_prefix_frac=target_prefix_frac,
)
self.sentences = lm_sentences
self.score = lm_sen_scores
self.pos_score = lm_sen_pos_scores
self.lm_dict = lm_dict
self.no_bpe_sentences = lm_no_bpe_sentences
self.bpe_tokens = lm_bpe_tokens
def parse_lm(input_file, prefix_len=None, bpe_symbol=None, target_prefix_frac=None):
"""parse output of eval_lm"""
with open(input_file, "r") as f:
text = f.readlines()
text = text[7:]
cleaned_text = text[:-2]
sentences = {}
sen_scores = {}
sen_pos_scores = {}
no_bpe_sentences = {}
num_bpe_tokens_dict = {}
for _i, line in enumerate(cleaned_text):
tokens = line.split()
if tokens[0].isdigit():
line_id = int(tokens[0])
scores = [float(x[1:-1]) for x in tokens[2::2]]
sentences[line_id] = " ".join(tokens[1::2][:-1]) + "\n"
if bpe_symbol is not None:
# exclude <eos> symbol to match output from generate.py
bpe_sen = " ".join(tokens[1::2][:-1]) + "\n"
no_bpe_sen = remove_bpe(bpe_sen, bpe_symbol)
no_bpe_sentences[line_id] = no_bpe_sen
if prefix_len is not None:
num_bpe_tokens = get_num_bpe_tokens_from_len(
bpe_sen, bpe_symbol, prefix_len
)
sen_scores[line_id] = sum(scores[:num_bpe_tokens])
num_bpe_tokens_dict[line_id] = num_bpe_tokens
elif target_prefix_frac is not None:
num_words, shortened, target_prefix_len = calc_length_from_frac(
bpe_sen, target_prefix_frac, bpe_symbol
)
sen_scores[line_id] = sum(scores[:target_prefix_len])
num_bpe_tokens_dict[line_id] = target_prefix_len
else:
sen_scores[line_id] = sum(scores)
num_bpe_tokens_dict[line_id] = len(scores)
sen_pos_scores[line_id] = scores
return sentences, sen_scores, sen_pos_scores, no_bpe_sentences, num_bpe_tokens_dict
def get_directories(
data_dir_name,
num_rescore,
gen_subset,
fw_name,
shard_id,
num_shards,
sampling=False,
prefix_len=None,
target_prefix_frac=None,
source_prefix_frac=None,
):
nbest_file_id = (
"nbest_"
+ str(num_rescore)
+ "_subset_"
+ gen_subset
+ "_fw_name_"
+ fw_name
+ "_shard_"
+ str(shard_id)
+ "_of_"
+ str(num_shards)
)
if sampling:
nbest_file_id += "_sampling"
# the directory containing all information for this nbest list
pre_gen = (
os.path.join(os.path.dirname(__file__))
+ "/rerank_data/"
+ data_dir_name
+ "/"
+ nbest_file_id
)
# the directory to store the preprocessed nbest list, for left to right rescoring
left_to_right_preprocessed_dir = pre_gen + "/left_to_right_preprocessed"
if source_prefix_frac is not None:
left_to_right_preprocessed_dir = (
left_to_right_preprocessed_dir + "/prefix_frac" + str(source_prefix_frac)
)
# the directory to store the preprocessed nbest list, for right to left rescoring
right_to_left_preprocessed_dir = pre_gen + "/right_to_left_preprocessed"
# the directory to store the preprocessed nbest list, for backwards rescoring
backwards_preprocessed_dir = pre_gen + "/backwards"
if target_prefix_frac is not None:
backwards_preprocessed_dir = (
backwards_preprocessed_dir + "/prefix_frac" + str(target_prefix_frac)
)
elif prefix_len is not None:
backwards_preprocessed_dir = (
backwards_preprocessed_dir + "/prefix_" + str(prefix_len)
)
# the directory to store the preprocessed nbest list, for rescoring with P(T)
lm_preprocessed_dir = pre_gen + "/lm_preprocessed"
return (
pre_gen,
left_to_right_preprocessed_dir,
right_to_left_preprocessed_dir,
backwards_preprocessed_dir,
lm_preprocessed_dir,
)
def lm_scoring(
preprocess_directory,
bpe_status,
gen_output,
pre_gen,
cur_lm_dict,
cur_lm_name,
cur_language_model,
cur_lm_bpe_code,
batch_size,
lm_score_file,
target_lang,
source_lang,
prefix_len=None,
):
if prefix_len is not None:
assert (
bpe_status == "different"
), "bpe status must be different to use prefix len"
if bpe_status == "no bpe":
# run lm on output without bpe
write_reprocessed(
gen_output.no_bpe_source,
gen_output.no_bpe_hypo,
gen_output.no_bpe_target,
pre_gen + "/rescore_data_no_bpe.de",
pre_gen + "/rescore_data_no_bpe.en",
pre_gen + "/reference_file_no_bpe",
)
preprocess_lm_param = [
"--only-source",
"--trainpref",
pre_gen + "/rescore_data_no_bpe." + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_directory,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_directory,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--max-tokens",
"1024",
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
elif bpe_status == "shared":
preprocess_lm_param = [
"--only-source",
"--trainpref",
pre_gen + "/rescore_data." + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_directory,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_directory,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
elif bpe_status == "different":
rescore_file = pre_gen + "/rescore_data_no_bpe"
rescore_bpe = pre_gen + "/rescore_data_new_bpe"
rescore_file += "."
rescore_bpe += "."
write_reprocessed(
gen_output.no_bpe_source,
gen_output.no_bpe_hypo,
gen_output.no_bpe_target,
rescore_file + source_lang,
rescore_file + target_lang,
pre_gen + "/reference_file_no_bpe",
bpe_symbol=None,
)
# apply LM bpe to nbest list
bpe_src_param = [
"-c",
cur_lm_bpe_code,
"--input",
rescore_file + target_lang,
"--output",
rescore_bpe + target_lang,
]
subprocess.call(
[
"python",
os.path.join(
os.path.dirname(__file__), "subword-nmt/subword_nmt/apply_bpe.py"
),
]
+ bpe_src_param,
shell=False,
)
# uncomment to use fastbpe instead of subword-nmt bpe
# bpe_src_param = [rescore_bpe+target_lang, rescore_file+target_lang, cur_lm_bpe_code]
# subprocess.call(["/private/home/edunov/fastBPE/fast", "applybpe"] + bpe_src_param, shell=False)
preprocess_dir = preprocess_directory
preprocess_lm_param = [
"--only-source",
"--trainpref",
rescore_bpe + target_lang,
"--srcdict",
cur_lm_dict,
"--destdir",
preprocess_dir,
]
preprocess_parser = options.get_preprocessing_parser()
input_args = preprocess_parser.parse_args(preprocess_lm_param)
preprocess.main(input_args)
eval_lm_param = [
preprocess_dir,
"--path",
cur_language_model,
"--output-word-probs",
"--batch-size",
str(batch_size),
"--max-tokens",
"1024",
"--sample-break-mode",
"eos",
"--gen-subset",
"train",
]
eval_lm_parser = options.get_eval_lm_parser()
input_args = options.parse_args_and_arch(eval_lm_parser, eval_lm_param)
with open(lm_score_file, "w") as f:
with redirect_stdout(f):
eval_lm.main(input_args)
def rescore_file_name(
nbest_dir,
prefix_len,
scorer_name,
lm_file=False,
target_prefix_frac=None,
source_prefix_frac=None,
backwards=None,
):
if lm_file:
score_file = nbest_dir + "/lm_score_translations_model_" + scorer_name + ".txt"
else:
score_file = nbest_dir + "/" + scorer_name + "_score_translations.txt"
if backwards:
if prefix_len is not None:
score_file += "prefix_len" + str(prefix_len)
elif target_prefix_frac is not None:
score_file += "target_prefix_frac" + str(target_prefix_frac)
else:
if source_prefix_frac is not None:
score_file += "source_prefix_frac" + str(source_prefix_frac)
return score_file