Spaces:
Running
Running
# The port for communication. Note that if you want to run multiple tasks on the same machine, | |
# you need to specify different port numbers. | |
export MASTER_PORT=6061 | |
det_weight=1 | |
cls_weight=0 | |
num_bins=64 | |
log_dir=./polyformer_b_pretrain_logs | |
save_dir=./polyformer_b_pretrain_checkpoints | |
mkdir -p $log_dir $save_dir | |
bpe_dir=../../utils/BPE | |
user_dir=../../polyformer_module | |
data_dir=../../datasets/pretrain | |
data=${data_dir}/train_shuffled.tsv,${data_dir}/val_refcoco_unc.tsv | |
selected_cols=0,3,1,2 | |
task=refcoco_pretrain | |
arch=polyformer_b | |
criterion=adjust_label_smoothed_cross_entropy | |
label_smoothing=0.1 | |
lr=3e-5 | |
max_epoch=5 | |
warmup_ratio=0.06 | |
batch_size=20 | |
update_freq=8 | |
resnet_drop_path_rate=0.0 | |
encoder_drop_path_rate=0.1 | |
decoder_drop_path_rate=0.1 | |
dropout=0.1 | |
attention_dropout=0.0 | |
max_src_length=80 | |
max_tgt_length=420 | |
patch_image_size=512 | |
for max_epoch in 20; do | |
echo "max_epoch "${max_epoch} | |
for lr in 5e-5; do | |
echo "lr "${lr} | |
for patch_image_size in 512; do | |
echo "patch_image_size "${patch_image_size} | |
log_file=${log_dir}/${max_epoch}"_"${lr}"_"${patch_image_size}".log" | |
save_path=${save_dir}/${max_epoch}"_"${lr}"_"${patch_image_size} | |
mkdir -p $save_path | |
CUDA_VISIBLE_DEVICES=0 python3 -m torch.distributed.launch --nproc_per_node=1 --master_port=${MASTER_PORT} ../../train.py \ | |
$data \ | |
--selected-cols=${selected_cols} \ | |
--bpe-dir=${bpe_dir} \ | |
--user-dir=${user_dir} \ | |
--reset-optimizer --reset-dataloader --reset-meters \ | |
--save-dir=${save_path} \ | |
--task=${task} \ | |
--arch=${arch} \ | |
--criterion=${criterion} \ | |
--label-smoothing=${label_smoothing} \ | |
--batch-size=${batch_size} \ | |
--update-freq=${update_freq} \ | |
--encoder-normalize-before \ | |
--decoder-normalize-before \ | |
--share-decoder-input-output-embed \ | |
--share-all-embeddings \ | |
--layernorm-embedding \ | |
--patch-layernorm-embedding \ | |
--code-layernorm-embedding \ | |
--resnet-drop-path-rate=${resnet_drop_path_rate} \ | |
--encoder-drop-path-rate=${encoder_drop_path_rate} \ | |
--decoder-drop-path-rate=${decoder_drop_path_rate} \ | |
--dropout=${dropout} \ | |
--attention-dropout=${attention_dropout} \ | |
--weight-decay=0.01 --optimizer=adam --adam-betas="(0.9,0.999)" --adam-eps=1e-08 --clip-norm=1.0 \ | |
--lr-scheduler=polynomial_decay --lr=${lr} \ | |
--max-epoch=${max_epoch} --warmup-ratio=${warmup_ratio} \ | |
--log-format=simple --log-interval=10 \ | |
--fixed-validation-seed=7 \ | |
--no-epoch-checkpoints --keep-best-checkpoints=1 \ | |
--save-interval=1 --validate-interval=1 \ | |
--save-interval-updates=1000 --validate-interval-updates=1000 \ | |
--eval-acc \ | |
--eval-args='{"beam":5,"min_len":2,"max_len_a":0,"max_len_b":2}' \ | |
--best-checkpoint-metric=score --maximize-best-checkpoint-metric \ | |
--max-src-length=${max_src_length} \ | |
--max-tgt-length=${max_tgt_length} \ | |
--find-unused-parameters \ | |
--add-type-embedding \ | |
--scale-attn \ | |
--scale-fc \ | |
--scale-heads \ | |
--disable-entangle \ | |
--num-bins=${num_bins} \ | |
--patch-image-size=${patch_image_size} \ | |
--fp16 \ | |
--fp16-scale-window=512 \ | |
--det_weight=${det_weight} \ | |
--cls_weight=${cls_weight} \ | |
--num-workers=0 > ${log_file} 2>&1 | |
done | |
done | |
done | |