kozak-vaclav's picture
Update app.py
d471c64 verified
import gradio as gr
import tensorflow as tf
import librosa
import numpy as np
from huggingface_hub import hf_hub_download, from_pretrained_keras
# Mel Spectrogram parameters
n_fft = 512 # FFT window length
hop_length = 160 # number of samples between successive frames
n_mels = 80 # Number of Mel bands
fmin = 0.0 # Minimum frequency
fmax = 8000.0 # Maximum frequency
sampling_rate = 16000
def extract_mel_spectrogram(audio) -> np.ndarray:
spectrogram = librosa.feature.melspectrogram(y=audio, sr=sampling_rate, hop_length=hop_length,
n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, power=2.0)
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
#spectrogram = np.expand_dims(spectrogram, axis=-1) # Adding channel dimension for the model
return spectrogram
def CTCLoss(y_true, y_pred):
# Compute the training-time loss value
batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
input_length = tf.math.reduce_sum(tf.cast(tf.not_equal(tf.reduce_max(y_pred, axis=2), 0), dtype="int64"), axis=1, keepdims=True)
label_length = tf.math.reduce_sum(tf.cast(tf.not_equal(y_true, -1), dtype="int64"), axis=1, keepdims=True)
loss = tf.keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
return loss
# Download model from Hugging Face Hub
# model_path = hf_hub_download(repo_id="kobrasoft/kobraspeech-rnn-cs", filename="saved_model.pb")
# with tf.keras.utils.custom_object_scope({'CTCLoss': CTCLoss}):
# model = tf.keras.models.load_model(model_path)
model = from_pretrained_keras("kobrasoft/kobraspeech-rnn-cs")
import pickle as pkl
num_to_char_path = hf_hub_download(repo_id="kobrasoft/kobraspeech-rnn-cs", filename="num_to_char.json")
with open(num_to_char_path, "rb") as f:
num_to_char = tf.keras.layers.StringLookup(vocabulary=pkl.load(f), oov_token="", invert=True)
def label_to_string(label):
return tf.strings.reduce_join(num_to_char(label)).numpy().decode()
def decode_batch_predictions(pred):
input_len = np.ones(pred.shape[0]) * pred.shape[1]
# Use greedy search. For complex tasks, you can use beam search
results = tf.keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
# Iterate over the results and get back the text
output_text = []
for result in results:
result = label_to_string(result)
output_text.append(result)
return output_text
def transcribe(audio_path):
# Load audio
audio, _ = librosa.load(audio_path, sr=sampling_rate)
# Extract features
features = extract_mel_spectrogram(audio)
# Model expects batch dimension
features = np.expand_dims(features, axis=0)
# Predict
prediction = model.predict(features)
# Assuming you have a method to decode the prediction into text
transcription = decode_batch_predictions(prediction)
return transcription[0]
demo = gr.Blocks()
mic_transcribe = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="microphone", type="filepath"),
outputs=gr.Textbox(),
)
file_transcribe = gr.Interface(
fn=transcribe,
inputs=gr.Audio(sources="upload", type="filepath"),
outputs=gr.Textbox(),
)
with demo:
gr.TabbedInterface(
[mic_transcribe, file_transcribe],
["Transcribe Microphone", "Transcribe Audio File"],
)
demo.launch(debug=True)
if __name__ == "__main__":
iface.launch()