Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,63 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
from transformers import Wav2Vec2Processor, TFWav2Vec2Model
|
4 |
import librosa
|
|
|
|
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Load audio
|
12 |
-
audio,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
#
|
15 |
-
|
16 |
-
logits = model(inputs.input_values).logits
|
17 |
|
18 |
-
|
19 |
-
predicted_ids = tf.argmax(logits, axis=-1)
|
20 |
-
transcription = processor.batch_decode(predicted_ids)[0]
|
21 |
-
return transcription
|
22 |
|
23 |
# Create Gradio interface
|
24 |
iface = gr.Interface(
|
25 |
fn=transcribe,
|
26 |
inputs=gr.inputs.Audio(source="microphone", type="filepath"),
|
27 |
outputs="text",
|
28 |
-
title="ASR
|
29 |
description="Upload an audio file or record your voice to get the transcription."
|
30 |
)
|
31 |
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
|
|
3 |
import librosa
|
4 |
+
import numpy as np
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
|
7 |
+
# Mel Spectrogram parameters
|
8 |
+
n_fft = 512 # FFT window length
|
9 |
+
hop_length = 160 # number of samples between successive frames
|
10 |
+
n_mels = 80 # Number of Mel bands
|
11 |
+
fmin = 0.0 # Minimum frequency
|
12 |
+
fmax = 8000.0 # Maximum frequency
|
13 |
+
sampling_rate = 16000
|
14 |
|
15 |
+
def extract_mel_spectrogram(audio) -> np.ndarray:
|
16 |
+
spectrogram = librosa.feature.melspectrogram(y=audio, sr=sampling_rate, hop_length=hop_length,
|
17 |
+
n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax, power=2.0)
|
18 |
+
spectrogram = librosa.power_to_db(spectrogram, ref=np.max)
|
19 |
+
#spectrogram = np.expand_dims(spectrogram, axis=-1) # Adding channel dimension for the model
|
20 |
+
return spectrogram
|
21 |
+
|
22 |
+
# Download model from Hugging Face Hub
|
23 |
+
model_path = hf_hub_download(repo_id="kobrasoft/kobraspeech-rnn-cs", filename="kobraspeech.17-40.19.keras")
|
24 |
+
model = tf.keras.models.load_model(model_path)
|
25 |
+
|
26 |
+
def decode_batch_predictions(pred):
|
27 |
+
input_len = np.ones(pred.shape[0]) * pred.shape[1]
|
28 |
+
# Use greedy search. For complex tasks, you can use beam search
|
29 |
+
results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
|
30 |
+
# Iterate over the results and get back the text
|
31 |
+
output_text = []
|
32 |
+
for result in results:
|
33 |
+
result = label_to_string(result)
|
34 |
+
output_text.append(result)
|
35 |
+
return output_text
|
36 |
+
|
37 |
+
def transcribe(audio_path):
|
38 |
# Load audio
|
39 |
+
audio, _ = librosa.load(audio_path, sr=sampling_rate)
|
40 |
+
|
41 |
+
# Extract features
|
42 |
+
features = extract_mel_spectrogram(audio)
|
43 |
+
|
44 |
+
# Model expects batch dimension
|
45 |
+
features = np.expand_dims(features, axis=0)
|
46 |
+
|
47 |
+
# Predict
|
48 |
+
prediction = model.predict(features)
|
49 |
|
50 |
+
# Assuming you have a method to decode the prediction into text
|
51 |
+
transcription = decode_batch_predictions(prediction)
|
|
|
52 |
|
53 |
+
return transcription[0]
|
|
|
|
|
|
|
54 |
|
55 |
# Create Gradio interface
|
56 |
iface = gr.Interface(
|
57 |
fn=transcribe,
|
58 |
inputs=gr.inputs.Audio(source="microphone", type="filepath"),
|
59 |
outputs="text",
|
60 |
+
title="Kobraspeech RNN ASR demo (cs)",
|
61 |
description="Upload an audio file or record your voice to get the transcription."
|
62 |
)
|
63 |
|