Spaces:
Sleeping
Sleeping
tricky_questions_and_avg_calcs
Browse files- .gitignore +1 -0
- app.py +58 -10
- data.json +119 -61
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
venv/
|
app.py
CHANGED
@@ -12,6 +12,8 @@ AVERAGE_COLUMN_NAME = "Average"
|
|
12 |
SENTIMENT_COLUMN_NAME = "Sentiment"
|
13 |
UNDERSTANDING_COLUMN_NAME = "Language understanding"
|
14 |
PHRASEOLOGY_COLUMN_NAME = "Phraseology"
|
|
|
|
|
15 |
|
16 |
# Function to load data from JSON file
|
17 |
@st.cache_data
|
@@ -23,23 +25,63 @@ def load_data(file_path):
|
|
23 |
# Function to style the DataFrame
|
24 |
@st.cache_data
|
25 |
def style_dataframe(df: pd.DataFrame):
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Insert the new column after the 'Average' column
|
28 |
cols = list(df.columns)
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
df = df[cols]
|
31 |
-
# Create a color ramp using Seaborn
|
32 |
return df
|
33 |
|
34 |
def styler(df: pd.DataFrame):
|
35 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
36 |
# Apply reverse color gradient to the "Params" column
|
37 |
params_palette = sns.color_palette("RdYlGn_r", as_cmap=True) # Reversed RdYlGn palette
|
38 |
-
styled_df = df.style.background_gradient(
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
return styled_df
|
44 |
|
45 |
|
@@ -149,7 +191,7 @@ with tab1:
|
|
149 |
# Closing filters in a expander
|
150 |
with st.expander("Filtering benchmark data", icon='🔍'):
|
151 |
# Filtering data, e.g. slider for params, average score, etc.
|
152 |
-
col_filter_params, col_filter_average, col_filter_sentiment, col_filter_understanding, col_filter_phraseology = st.columns(
|
153 |
|
154 |
with col_filter_params:
|
155 |
params_slider = st.slider("Models Size [B]", min_value=0.0, max_value=float(data['Params'].max()), value=(0.0, float(data['Params'].max())), step=0.1, format="%.1f")
|
@@ -170,6 +212,10 @@ with tab1:
|
|
170 |
with col_filter_phraseology:
|
171 |
phraseology_slider = st.slider("Phraseology score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
172 |
data = data[(data[PHRASEOLOGY_COLUMN_NAME] >= phraseology_slider[0]) & (data[PHRASEOLOGY_COLUMN_NAME] <= phraseology_slider[1])]
|
|
|
|
|
|
|
|
|
173 |
|
174 |
# Extract unique provider names from the "Model" column
|
175 |
providers = data["Model"].apply(lambda x: x.split('/')[0].lower()).unique()
|
@@ -191,6 +237,8 @@ with tab1:
|
|
191 |
SENTIMENT_COLUMN_NAME: st.column_config.NumberColumn(SENTIMENT_COLUMN_NAME, help='Ability to analyze sentiment'),
|
192 |
UNDERSTANDING_COLUMN_NAME: st.column_config.NumberColumn(UNDERSTANDING_COLUMN_NAME, help='Ability to understand language'),
|
193 |
PHRASEOLOGY_COLUMN_NAME: st.column_config.NumberColumn(PHRASEOLOGY_COLUMN_NAME, help='Ability to understand phraseological compounds'),
|
|
|
|
|
194 |
}, hide_index=True, disabled=True, height=500)
|
195 |
|
196 |
# Add selection for models and create a bar chart for selected models using the AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME
|
@@ -201,7 +249,7 @@ with tab1:
|
|
201 |
default_models.append(bielik_model)
|
202 |
selected_models = st.multiselect("Select models to compare", data["Model"].unique(), default=default_models)
|
203 |
selected_data = data[data["Model"].isin(selected_models)]
|
204 |
-
categories = [AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME]
|
205 |
|
206 |
if selected_models:
|
207 |
# Kolorki do wyboru:
|
|
|
12 |
SENTIMENT_COLUMN_NAME = "Sentiment"
|
13 |
UNDERSTANDING_COLUMN_NAME = "Language understanding"
|
14 |
PHRASEOLOGY_COLUMN_NAME = "Phraseology"
|
15 |
+
TRICKY_QUESTIONS_COLUMN_NAME = "Tricky questions"
|
16 |
+
IMPLICATURES_AVERAGE_COLUMN_NAME = "Implicatures average"
|
17 |
|
18 |
# Function to load data from JSON file
|
19 |
@st.cache_data
|
|
|
25 |
# Function to style the DataFrame
|
26 |
@st.cache_data
|
27 |
def style_dataframe(df: pd.DataFrame):
|
28 |
+
# Calculate Implicatures average from the three columns
|
29 |
+
df[IMPLICATURES_AVERAGE_COLUMN_NAME] = df.apply(
|
30 |
+
lambda row: (row[SENTIMENT_COLUMN_NAME] + row[UNDERSTANDING_COLUMN_NAME] + row[PHRASEOLOGY_COLUMN_NAME]) / 3,
|
31 |
+
axis=1
|
32 |
+
)
|
33 |
+
|
34 |
+
# Calculate Average from all four columns
|
35 |
+
df[AVERAGE_COLUMN_NAME] = df.apply(
|
36 |
+
lambda row: (row[SENTIMENT_COLUMN_NAME] + row[UNDERSTANDING_COLUMN_NAME] +
|
37 |
+
row[PHRASEOLOGY_COLUMN_NAME] + row[TRICKY_QUESTIONS_COLUMN_NAME]) / 4,
|
38 |
+
axis=1
|
39 |
+
)
|
40 |
+
|
41 |
+
df[RESULTS_COLUMN_NAME] = df.apply(
|
42 |
+
lambda row: [row[SENTIMENT_COLUMN_NAME], row[UNDERSTANDING_COLUMN_NAME],
|
43 |
+
row[PHRASEOLOGY_COLUMN_NAME], row[TRICKY_QUESTIONS_COLUMN_NAME]],
|
44 |
+
axis=1
|
45 |
+
)
|
46 |
+
|
47 |
# Insert the new column after the 'Average' column
|
48 |
cols = list(df.columns)
|
49 |
+
avg_index = cols.index(AVERAGE_COLUMN_NAME)
|
50 |
+
|
51 |
+
# Remove columns from their current positions if they exist
|
52 |
+
if IMPLICATURES_AVERAGE_COLUMN_NAME in cols:
|
53 |
+
cols.pop(cols.index(IMPLICATURES_AVERAGE_COLUMN_NAME))
|
54 |
+
if RESULTS_COLUMN_NAME in cols:
|
55 |
+
cols.pop(cols.index(RESULTS_COLUMN_NAME))
|
56 |
+
|
57 |
+
# Insert columns in the desired order
|
58 |
+
cols.insert(avg_index + 1, IMPLICATURES_AVERAGE_COLUMN_NAME)
|
59 |
+
cols.insert(avg_index + 2, RESULTS_COLUMN_NAME)
|
60 |
+
|
61 |
df = df[cols]
|
|
|
62 |
return df
|
63 |
|
64 |
def styler(df: pd.DataFrame):
|
65 |
palette = sns.color_palette("RdYlGn", as_cmap=True)
|
66 |
# Apply reverse color gradient to the "Params" column
|
67 |
params_palette = sns.color_palette("RdYlGn_r", as_cmap=True) # Reversed RdYlGn palette
|
68 |
+
styled_df = df.style.background_gradient(
|
69 |
+
cmap=palette,
|
70 |
+
subset=[AVERAGE_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME,
|
71 |
+
PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME]
|
72 |
+
).background_gradient(
|
73 |
+
cmap=params_palette, subset=["Params"]
|
74 |
+
).set_properties(
|
75 |
+
**{'text-align': 'center'},
|
76 |
+
subset=[AVERAGE_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME,
|
77 |
+
PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME]
|
78 |
+
).format(
|
79 |
+
"{:.2f}".center(10),
|
80 |
+
subset=[AVERAGE_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME,
|
81 |
+
PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME]
|
82 |
+
).format(
|
83 |
+
"{:.1f}".center(10), subset=["Params"]
|
84 |
+
)
|
85 |
return styled_df
|
86 |
|
87 |
|
|
|
191 |
# Closing filters in a expander
|
192 |
with st.expander("Filtering benchmark data", icon='🔍'):
|
193 |
# Filtering data, e.g. slider for params, average score, etc.
|
194 |
+
col_filter_params, col_filter_average, col_filter_sentiment, col_filter_understanding, col_filter_phraseology, col_filter_tricky = st.columns(6, gap='medium')
|
195 |
|
196 |
with col_filter_params:
|
197 |
params_slider = st.slider("Models Size [B]", min_value=0.0, max_value=float(data['Params'].max()), value=(0.0, float(data['Params'].max())), step=0.1, format="%.1f")
|
|
|
212 |
with col_filter_phraseology:
|
213 |
phraseology_slider = st.slider("Phraseology score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
214 |
data = data[(data[PHRASEOLOGY_COLUMN_NAME] >= phraseology_slider[0]) & (data[PHRASEOLOGY_COLUMN_NAME] <= phraseology_slider[1])]
|
215 |
+
|
216 |
+
with col_filter_tricky:
|
217 |
+
tricky_slider = st.slider("Tricky questions score", step=0.1, min_value=0.0, max_value=5.0, value=(0.0, 5.0))
|
218 |
+
data = data[(data[TRICKY_QUESTIONS_COLUMN_NAME] >= tricky_slider[0]) & (data[TRICKY_QUESTIONS_COLUMN_NAME] <= tricky_slider[1])]
|
219 |
|
220 |
# Extract unique provider names from the "Model" column
|
221 |
providers = data["Model"].apply(lambda x: x.split('/')[0].lower()).unique()
|
|
|
237 |
SENTIMENT_COLUMN_NAME: st.column_config.NumberColumn(SENTIMENT_COLUMN_NAME, help='Ability to analyze sentiment'),
|
238 |
UNDERSTANDING_COLUMN_NAME: st.column_config.NumberColumn(UNDERSTANDING_COLUMN_NAME, help='Ability to understand language'),
|
239 |
PHRASEOLOGY_COLUMN_NAME: st.column_config.NumberColumn(PHRASEOLOGY_COLUMN_NAME, help='Ability to understand phraseological compounds'),
|
240 |
+
TRICKY_QUESTIONS_COLUMN_NAME: st.column_config.NumberColumn(TRICKY_QUESTIONS_COLUMN_NAME, help='Ability to understand tricky questions'),
|
241 |
+
IMPLICATURES_AVERAGE_COLUMN_NAME: st.column_config.NumberColumn(IMPLICATURES_AVERAGE_COLUMN_NAME, help='Average of sentiment, understanding, and phraseology'),
|
242 |
}, hide_index=True, disabled=True, height=500)
|
243 |
|
244 |
# Add selection for models and create a bar chart for selected models using the AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME
|
|
|
249 |
default_models.append(bielik_model)
|
250 |
selected_models = st.multiselect("Select models to compare", data["Model"].unique(), default=default_models)
|
251 |
selected_data = data[data["Model"].isin(selected_models)]
|
252 |
+
categories = [AVERAGE_COLUMN_NAME, IMPLICATURES_AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME, TRICKY_QUESTIONS_COLUMN_NAME]
|
253 |
|
254 |
if selected_models:
|
255 |
# Kolorki do wyboru:
|
data.json
CHANGED
@@ -5,7 +5,8 @@
|
|
5 |
"Average": 4.03025641025641,
|
6 |
"Sentiment": 4.230769230769231,
|
7 |
"Language understanding": 4.0,
|
8 |
-
"Phraseology": 3.86
|
|
|
9 |
},
|
10 |
{
|
11 |
"Model": "alpindale/WizardLM-2-8x22B",
|
@@ -13,7 +14,8 @@
|
|
13 |
"Average": 3.9133760683760683,
|
14 |
"Sentiment": 3.7051282051282053,
|
15 |
"Language understanding": 3.815,
|
16 |
-
"Phraseology": 4.22
|
|
|
17 |
},
|
18 |
{
|
19 |
"Model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
@@ -21,7 +23,8 @@
|
|
21 |
"Average": 3.828974358974359,
|
22 |
"Sentiment": 4.326923076923077,
|
23 |
"Language understanding": 3.91,
|
24 |
-
"Phraseology": 3.25
|
|
|
25 |
},
|
26 |
{
|
27 |
"Model": "meta-llama/Meta-Llama-3-70B-Instruct",
|
@@ -29,7 +32,8 @@
|
|
29 |
"Average": 3.806538461538462,
|
30 |
"Sentiment": 4.134615384615385,
|
31 |
"Language understanding": 3.82,
|
32 |
-
"Phraseology": 3.465
|
|
|
33 |
},
|
34 |
{
|
35 |
"Model": "speakleash/Bielik-11B-v2.3-Instruct",
|
@@ -37,7 +41,8 @@
|
|
37 |
"Average": 3.7697863247863252,
|
38 |
"Sentiment": 3.9743589743589745,
|
39 |
"Language understanding": 3.785,
|
40 |
-
"Phraseology": 3.55
|
|
|
41 |
},
|
42 |
{
|
43 |
"Model": "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
@@ -45,7 +50,8 @@
|
|
45 |
"Average": 3.6690170940170943,
|
46 |
"Sentiment": 3.782051282051282,
|
47 |
"Language understanding": 3.675,
|
48 |
-
"Phraseology": 3.55
|
|
|
49 |
},
|
50 |
{
|
51 |
"Model": "speakleash/Bielik-11B-v2.1-Instruct",
|
@@ -53,7 +59,8 @@
|
|
53 |
"Average": 3.6583760683760684,
|
54 |
"Sentiment": 3.9551282051282053,
|
55 |
"Language understanding": 3.915,
|
56 |
-
"Phraseology": 3.105
|
|
|
57 |
},
|
58 |
{
|
59 |
"Model": "Qwen/Qwen2-72B-Instruct",
|
@@ -61,7 +68,8 @@
|
|
61 |
"Average": 3.6442735042735044,
|
62 |
"Sentiment": 3.7628205128205128,
|
63 |
"Language understanding": 3.89,
|
64 |
-
"Phraseology": 3.28
|
|
|
65 |
},
|
66 |
{
|
67 |
"Model": "speakleash/Bielik-11B-v2.0-Instruct",
|
@@ -69,7 +77,8 @@
|
|
69 |
"Average": 3.614786324786325,
|
70 |
"Sentiment": 3.9743589743589745,
|
71 |
"Language understanding": 3.745,
|
72 |
-
"Phraseology": 3.125
|
|
|
73 |
},
|
74 |
{
|
75 |
"Model": "speakleash/Bielik-11B-v2.2-Instruct",
|
@@ -77,7 +86,8 @@
|
|
77 |
"Average": 3.565982905982906,
|
78 |
"Sentiment": 3.717948717948718,
|
79 |
"Language understanding": 3.73,
|
80 |
-
"Phraseology": 3.25
|
|
|
81 |
},
|
82 |
{
|
83 |
"Model": "Qwen/Qwen1.5-72B-Chat",
|
@@ -85,7 +95,8 @@
|
|
85 |
"Average": 3.3214529914529916,
|
86 |
"Sentiment": 3.4743589743589745,
|
87 |
"Language understanding": 3.515,
|
88 |
-
"Phraseology": 2.975
|
|
|
89 |
},
|
90 |
{
|
91 |
"Model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
@@ -93,7 +104,8 @@
|
|
93 |
"Average": 3.3114529914529918,
|
94 |
"Sentiment": 3.9743589743589745,
|
95 |
"Language understanding": 3.38,
|
96 |
-
"Phraseology": 2.58
|
|
|
97 |
},
|
98 |
{
|
99 |
"Model": "THUDM/glm-4-9b-chat",
|
@@ -101,7 +113,8 @@
|
|
101 |
"Average": 3.2749145299145295,
|
102 |
"Sentiment": 3.58974358974359,
|
103 |
"Language understanding": 3.455,
|
104 |
-
"Phraseology": 2.78
|
|
|
105 |
},
|
106 |
{
|
107 |
"Model": "mistralai/Mistral-Nemo-Instruct-2407",
|
@@ -109,7 +122,8 @@
|
|
109 |
"Average": 3.223675213675214,
|
110 |
"Sentiment": 3.641025641025641,
|
111 |
"Language understanding": 3.29,
|
112 |
-
"Phraseology": 2.74
|
|
|
113 |
},
|
114 |
{
|
115 |
"Model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
@@ -117,7 +131,8 @@
|
|
117 |
"Average": 3.172777777777778,
|
118 |
"Sentiment": 3.3333333333333335,
|
119 |
"Language understanding": 3.15,
|
120 |
-
"Phraseology": 3.035
|
|
|
121 |
},
|
122 |
{
|
123 |
"Model": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
@@ -125,7 +140,8 @@
|
|
125 |
"Average": 3.1343162393162394,
|
126 |
"Sentiment": 2.967948717948718,
|
127 |
"Language understanding": 3.18,
|
128 |
-
"Phraseology": 3.255
|
|
|
129 |
},
|
130 |
{
|
131 |
"Model": "speakleash/Bielik-7B-Instruct-v0.1",
|
@@ -133,7 +149,8 @@
|
|
133 |
"Average": 3.126581196581197,
|
134 |
"Sentiment": 3.58974358974359,
|
135 |
"Language understanding": 3.475,
|
136 |
-
"Phraseology": 2.315
|
|
|
137 |
},
|
138 |
{
|
139 |
"Model": "openchat/openchat-3.5-0106-gemma",
|
@@ -141,7 +158,8 @@
|
|
141 |
"Average": 3.08525641025641,
|
142 |
"Sentiment": 3.730769230769231,
|
143 |
"Language understanding": 3.08,
|
144 |
-
"Phraseology": 2.445
|
|
|
145 |
},
|
146 |
{
|
147 |
"Model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
@@ -149,7 +167,8 @@
|
|
149 |
"Average": 3.039230769230769,
|
150 |
"Sentiment": 3.0576923076923075,
|
151 |
"Language understanding": 3.175,
|
152 |
-
"Phraseology": 2.885
|
|
|
153 |
},
|
154 |
{
|
155 |
"Model": "mistralai/Mistral-7B-Instruct-v0.3",
|
@@ -157,7 +176,8 @@
|
|
157 |
"Average": 3.022307692307692,
|
158 |
"Sentiment": 3.326923076923077,
|
159 |
"Language understanding": 3.06,
|
160 |
-
"Phraseology": 2.68
|
|
|
161 |
},
|
162 |
{
|
163 |
"Model": "berkeley-nest/Starling-LM-7B-alpha",
|
@@ -165,7 +185,8 @@
|
|
165 |
"Average": 2.945897435897436,
|
166 |
"Sentiment": 3.0576923076923075,
|
167 |
"Language understanding": 2.925,
|
168 |
-
"Phraseology": 2.855
|
|
|
169 |
},
|
170 |
{
|
171 |
"Model": "openchat/openchat-3.5-0106",
|
@@ -173,7 +194,8 @@
|
|
173 |
"Average": 2.8500854700854696,
|
174 |
"Sentiment": 3.16025641025641,
|
175 |
"Language understanding": 2.835,
|
176 |
-
"Phraseology": 2.555
|
|
|
177 |
},
|
178 |
{
|
179 |
"Model": "internlm/internlm2-chat-20b",
|
@@ -181,7 +203,8 @@
|
|
181 |
"Average": 2.8237606837606837,
|
182 |
"Sentiment": 3.301282051282051,
|
183 |
"Language understanding": 2.785,
|
184 |
-
"Phraseology": 2.385
|
|
|
185 |
},
|
186 |
{
|
187 |
"Model": "01-ai/Yi-1.5-34B-Chat",
|
@@ -189,7 +212,8 @@
|
|
189 |
"Average": 2.7756410256410255,
|
190 |
"Sentiment": 3.076923076923077,
|
191 |
"Language understanding": 2.87,
|
192 |
-
"Phraseology": 2.38
|
|
|
193 |
},
|
194 |
{
|
195 |
"Model": "Voicelab/trurl-2-13b-academic",
|
@@ -197,7 +221,8 @@
|
|
197 |
"Average": 2.74042735042735,
|
198 |
"Sentiment": 3.301282051282051,
|
199 |
"Language understanding": 2.755,
|
200 |
-
"Phraseology": 2.165
|
|
|
201 |
},
|
202 |
{
|
203 |
"Model": "google/gemma-2-2b-it",
|
@@ -205,7 +230,8 @@
|
|
205 |
"Average": 2.7974786324786325,
|
206 |
"Sentiment": 3.3974358974359,
|
207 |
"Language understanding": 2.9,
|
208 |
-
"Phraseology": 2.095
|
|
|
209 |
},
|
210 |
{
|
211 |
"Model": "Qwen/Qwen2.5-3B-Instruct",
|
@@ -213,7 +239,8 @@
|
|
213 |
"Average": 2.734572649572649,
|
214 |
"Sentiment": 2.948717948717949,
|
215 |
"Language understanding": 2.455,
|
216 |
-
"Phraseology": 2.8
|
|
|
217 |
},
|
218 |
{
|
219 |
"Model": "NousResearch/Hermes-3-Llama-3.2-3B",
|
@@ -221,7 +248,8 @@
|
|
221 |
"Average": 2.695128205128205,
|
222 |
"Sentiment": 2.6153846153846154,
|
223 |
"Language understanding": 2.705,
|
224 |
-
"Phraseology": 2.765
|
|
|
225 |
},
|
226 |
{
|
227 |
"Model": "ibm-granite/granite-3.1-2b-instruct",
|
@@ -229,7 +257,8 @@
|
|
229 |
"Average": 2.397307692307692,
|
230 |
"Sentiment": 3.076923076923077,
|
231 |
"Language understanding": 2.235,
|
232 |
-
"Phraseology": 1.88
|
|
|
233 |
},
|
234 |
{
|
235 |
"Model": "meta-llama/Llama-3.2-1B-Instruct",
|
@@ -237,7 +266,8 @@
|
|
237 |
"Average": 2.383974358974359,
|
238 |
"Sentiment": 3.076923076923077,
|
239 |
"Language understanding": 1.735,
|
240 |
-
"Phraseology": 2.34
|
|
|
241 |
},
|
242 |
{
|
243 |
"Model": "microsoft/Phi-3.5-mini-instruct",
|
@@ -245,7 +275,8 @@
|
|
245 |
"Average": 2.331965811965812,
|
246 |
"Sentiment": 2.435897435897436,
|
247 |
"Language understanding": 2.135,
|
248 |
-
"Phraseology": 2.425
|
|
|
249 |
},
|
250 |
{
|
251 |
"Model": "meta-llama/Llama-3.2-3B-Instruct",
|
@@ -253,7 +284,8 @@
|
|
253 |
"Average": 2.257136752136752,
|
254 |
"Sentiment": 2.7564102564102564,
|
255 |
"Language understanding": 2.295,
|
256 |
-
"Phraseology": 1.72
|
|
|
257 |
},
|
258 |
{
|
259 |
"Model": "h2oai/h2o-danube2-1.8b-chat",
|
@@ -261,7 +293,8 @@
|
|
261 |
"Average": 2.1455982905982904,
|
262 |
"Sentiment": 2.371794871794872,
|
263 |
"Language understanding": 1.595,
|
264 |
-
"Phraseology": 2.47
|
|
|
265 |
},
|
266 |
{
|
267 |
"Model": "Qwen/Qwen2.5-1.5B-Instruct",
|
@@ -269,7 +302,8 @@
|
|
269 |
"Average": 2.1232905982905983,
|
270 |
"Sentiment": 2.7948717948717947,
|
271 |
"Language understanding": 1.35,
|
272 |
-
"Phraseology": 2.225
|
|
|
273 |
},
|
274 |
{
|
275 |
"Model": "utter-project/EuroLLM-1.7B-Instruct",
|
@@ -277,7 +311,8 @@
|
|
277 |
"Average": 2.097863247863248,
|
278 |
"Sentiment": 2.243589743589744,
|
279 |
"Language understanding": 1.79,
|
280 |
-
"Phraseology": 2.26
|
|
|
281 |
},
|
282 |
{
|
283 |
"Model": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
@@ -285,7 +320,8 @@
|
|
285 |
"Average": 2.062846282695529,
|
286 |
"Sentiment": 1.9423076923076923,
|
287 |
"Language understanding": 2.1155778894472363,
|
288 |
-
"Phraseology": 2.130653266331658
|
|
|
289 |
},
|
290 |
{
|
291 |
"Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
@@ -293,7 +329,8 @@
|
|
293 |
"Average": 1.9102136752136751,
|
294 |
"Sentiment": 2.275641025641025,
|
295 |
"Language understanding": 1.1,
|
296 |
-
"Phraseology": 2.355
|
|
|
297 |
},
|
298 |
{
|
299 |
"Model": "Qwen/Qwen2.5-0.5B-Instruct",
|
@@ -301,7 +338,8 @@
|
|
301 |
"Average": 1.7950427350427354,
|
302 |
"Sentiment": 1.955128205128205,
|
303 |
"Language understanding": 0.835,
|
304 |
-
"Phraseology": 2.595
|
|
|
305 |
},
|
306 |
{
|
307 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-chat",
|
@@ -309,7 +347,8 @@
|
|
309 |
"Average": 3.63,
|
310 |
"Sentiment": 3.94,
|
311 |
"Language understanding": 3.61,
|
312 |
-
"Phraseology": 3.35
|
|
|
313 |
},
|
314 |
{
|
315 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-instruct",
|
@@ -317,7 +356,8 @@
|
|
317 |
"Average": 3.56,
|
318 |
"Sentiment": 3.88,
|
319 |
"Language understanding": 3.59,
|
320 |
-
"Phraseology": 3.22
|
|
|
321 |
},
|
322 |
{
|
323 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-instruct",
|
@@ -325,15 +365,17 @@
|
|
325 |
"Average": 3.56,
|
326 |
"Sentiment": 3.78,
|
327 |
"Language understanding": 3.63,
|
328 |
-
"Phraseology": 3.26
|
|
|
329 |
},
|
330 |
{
|
331 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-instruct",
|
332 |
"Params": "46.7B",
|
333 |
-
"Average": 3.
|
334 |
"Sentiment": 3.59,
|
335 |
"Language understanding": 3.47,
|
336 |
-
"Phraseology": 3.46
|
|
|
337 |
},
|
338 |
{
|
339 |
"Model": "CYFRAGOVPL/PLLuM-12B-instruct",
|
@@ -341,7 +383,8 @@
|
|
341 |
"Average": 3.49,
|
342 |
"Sentiment": 3.71,
|
343 |
"Language understanding": 3.17,
|
344 |
-
"Phraseology": 3.59
|
|
|
345 |
},
|
346 |
{
|
347 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-chat",
|
@@ -349,7 +392,8 @@
|
|
349 |
"Average": 3.44,
|
350 |
"Sentiment": 3.76,
|
351 |
"Language understanding": 3.48,
|
352 |
-
"Phraseology": 3.08
|
|
|
353 |
},
|
354 |
{
|
355 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-chat",
|
@@ -357,7 +401,8 @@
|
|
357 |
"Average": 3.41,
|
358 |
"Sentiment": 3.44,
|
359 |
"Language understanding": 3.45,
|
360 |
-
"Phraseology": 3.35
|
|
|
361 |
},
|
362 |
{
|
363 |
"Model": "CYFRAGOVPL/PLLuM-12B-chat",
|
@@ -365,7 +410,8 @@
|
|
365 |
"Average": 3.32,
|
366 |
"Sentiment": 3.32,
|
367 |
"Language understanding": 3.21,
|
368 |
-
"Phraseology": 3.43
|
|
|
369 |
},
|
370 |
{
|
371 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-instruct",
|
@@ -373,15 +419,17 @@
|
|
373 |
"Average": 3.29,
|
374 |
"Sentiment": 3.24,
|
375 |
"Language understanding": 3.31,
|
376 |
-
"Phraseology": 3.32
|
|
|
377 |
},
|
378 |
{
|
379 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-instruct",
|
380 |
"Params": "8.03B",
|
381 |
-
"Average": 3.
|
382 |
"Sentiment": 3.24,
|
383 |
-
"Language understanding": 2.
|
384 |
-
"Phraseology": 3.46
|
|
|
385 |
},
|
386 |
{
|
387 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-chat",
|
@@ -389,7 +437,8 @@
|
|
389 |
"Average": 3.14,
|
390 |
"Sentiment": 3.13,
|
391 |
"Language understanding": 2.93,
|
392 |
-
"Phraseology": 3.36
|
|
|
393 |
},
|
394 |
{
|
395 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-chat",
|
@@ -397,7 +446,8 @@
|
|
397 |
"Average": 3.33,
|
398 |
"Sentiment": 3.22,
|
399 |
"Language understanding": 3.23,
|
400 |
-
"Phraseology": 3.54
|
|
|
401 |
},
|
402 |
{
|
403 |
"Model": "Qwen/Qwen2.5-72B-Instruct",
|
@@ -405,7 +455,8 @@
|
|
405 |
"Average": 3.9923076923076923,
|
406 |
"Sentiment": 4.076923076923077,
|
407 |
"Language understanding": 3.97,
|
408 |
-
"Phraseology": 3.93
|
|
|
409 |
},
|
410 |
{
|
411 |
"Model": "Qwen/Qwen2.5-32B-Instruct",
|
@@ -413,7 +464,8 @@
|
|
413 |
"Average": 3.8047008547008545,
|
414 |
"Sentiment": 3.8141025641025643,
|
415 |
"Language understanding": 3.565,
|
416 |
-
"Phraseology": 4.035
|
|
|
417 |
},
|
418 |
{
|
419 |
"Model": "mistralai/Mistral-Small-24B-Instruct-2501",
|
@@ -421,7 +473,8 @@
|
|
421 |
"Average": 3.79508547008547,
|
422 |
"Sentiment": 3.91025641025641,
|
423 |
"Language understanding": 3.6,
|
424 |
-
"Phraseology": 3.875
|
|
|
425 |
},
|
426 |
{
|
427 |
"Model": "meta-llama/Llama-3.3-70B-Instruct",
|
@@ -429,7 +482,8 @@
|
|
429 |
"Average": 3.7332905982905977,
|
430 |
"Sentiment": 4.294871794871795,
|
431 |
"Language understanding": 3.865,
|
432 |
-
"Phraseology": 3.04
|
|
|
433 |
},
|
434 |
{
|
435 |
"Model": "Qwen/Qwen2.5-14B-Instruct",
|
@@ -437,7 +491,8 @@
|
|
437 |
"Average": 3.61508547008547,
|
438 |
"Sentiment": 3.91025641025641,
|
439 |
"Language understanding": 3.565,
|
440 |
-
"Phraseology": 3.37
|
|
|
441 |
},
|
442 |
{
|
443 |
"Model": "microsoft/phi-4",
|
@@ -445,7 +500,8 @@
|
|
445 |
"Average": 3.4976495726495727,
|
446 |
"Sentiment": 3.717948717948718,
|
447 |
"Language understanding": 3.54,
|
448 |
-
"Phraseology": 3.235
|
|
|
449 |
},
|
450 |
{
|
451 |
"Model": "Qwen/Qwen2.5-7B-Instruct",
|
@@ -453,7 +509,8 @@
|
|
453 |
"Average": 3.2258974358974357,
|
454 |
"Sentiment": 3.5576923076923075,
|
455 |
"Language understanding": 3.025,
|
456 |
-
"Phraseology": 3.095
|
|
|
457 |
},
|
458 |
{
|
459 |
"Model": "microsoft/Phi-4-mini-instruct",
|
@@ -461,6 +518,7 @@
|
|
461 |
"Average": 2.455769230769231,
|
462 |
"Sentiment": 2.6923076923076925,
|
463 |
"Language understanding": 2.43,
|
464 |
-
"Phraseology": 2.245
|
|
|
465 |
}
|
466 |
]
|
|
|
5 |
"Average": 4.03025641025641,
|
6 |
"Sentiment": 4.230769230769231,
|
7 |
"Language understanding": 4.0,
|
8 |
+
"Phraseology": 3.86,
|
9 |
+
"Tricky questions": 4.0
|
10 |
},
|
11 |
{
|
12 |
"Model": "alpindale/WizardLM-2-8x22B",
|
|
|
14 |
"Average": 3.9133760683760683,
|
15 |
"Sentiment": 3.7051282051282053,
|
16 |
"Language understanding": 3.815,
|
17 |
+
"Phraseology": 4.22,
|
18 |
+
"Tricky questions": 4.0
|
19 |
},
|
20 |
{
|
21 |
"Model": "meta-llama/Meta-Llama-3.1-70B-Instruct",
|
|
|
23 |
"Average": 3.828974358974359,
|
24 |
"Sentiment": 4.326923076923077,
|
25 |
"Language understanding": 3.91,
|
26 |
+
"Phraseology": 3.25,
|
27 |
+
"Tricky questions": 4.0
|
28 |
},
|
29 |
{
|
30 |
"Model": "meta-llama/Meta-Llama-3-70B-Instruct",
|
|
|
32 |
"Average": 3.806538461538462,
|
33 |
"Sentiment": 4.134615384615385,
|
34 |
"Language understanding": 3.82,
|
35 |
+
"Phraseology": 3.465,
|
36 |
+
"Tricky questions": 4.0
|
37 |
},
|
38 |
{
|
39 |
"Model": "speakleash/Bielik-11B-v2.3-Instruct",
|
|
|
41 |
"Average": 3.7697863247863252,
|
42 |
"Sentiment": 3.9743589743589745,
|
43 |
"Language understanding": 3.785,
|
44 |
+
"Phraseology": 3.55,
|
45 |
+
"Tricky questions": 4.0
|
46 |
},
|
47 |
{
|
48 |
"Model": "mistralai/Mixtral-8x22B-Instruct-v0.1",
|
|
|
50 |
"Average": 3.6690170940170943,
|
51 |
"Sentiment": 3.782051282051282,
|
52 |
"Language understanding": 3.675,
|
53 |
+
"Phraseology": 3.55,
|
54 |
+
"Tricky questions": 4.0
|
55 |
},
|
56 |
{
|
57 |
"Model": "speakleash/Bielik-11B-v2.1-Instruct",
|
|
|
59 |
"Average": 3.6583760683760684,
|
60 |
"Sentiment": 3.9551282051282053,
|
61 |
"Language understanding": 3.915,
|
62 |
+
"Phraseology": 3.105,
|
63 |
+
"Tricky questions": 4.0
|
64 |
},
|
65 |
{
|
66 |
"Model": "Qwen/Qwen2-72B-Instruct",
|
|
|
68 |
"Average": 3.6442735042735044,
|
69 |
"Sentiment": 3.7628205128205128,
|
70 |
"Language understanding": 3.89,
|
71 |
+
"Phraseology": 3.28,
|
72 |
+
"Tricky questions": 4.0
|
73 |
},
|
74 |
{
|
75 |
"Model": "speakleash/Bielik-11B-v2.0-Instruct",
|
|
|
77 |
"Average": 3.614786324786325,
|
78 |
"Sentiment": 3.9743589743589745,
|
79 |
"Language understanding": 3.745,
|
80 |
+
"Phraseology": 3.125,
|
81 |
+
"Tricky questions": 4.0
|
82 |
},
|
83 |
{
|
84 |
"Model": "speakleash/Bielik-11B-v2.2-Instruct",
|
|
|
86 |
"Average": 3.565982905982906,
|
87 |
"Sentiment": 3.717948717948718,
|
88 |
"Language understanding": 3.73,
|
89 |
+
"Phraseology": 3.25,
|
90 |
+
"Tricky questions": 4.0
|
91 |
},
|
92 |
{
|
93 |
"Model": "Qwen/Qwen1.5-72B-Chat",
|
|
|
95 |
"Average": 3.3214529914529916,
|
96 |
"Sentiment": 3.4743589743589745,
|
97 |
"Language understanding": 3.515,
|
98 |
+
"Phraseology": 2.975,
|
99 |
+
"Tricky questions": 4.0
|
100 |
},
|
101 |
{
|
102 |
"Model": "meta-llama/Meta-Llama-3.1-8B-Instruct",
|
|
|
104 |
"Average": 3.3114529914529918,
|
105 |
"Sentiment": 3.9743589743589745,
|
106 |
"Language understanding": 3.38,
|
107 |
+
"Phraseology": 2.58,
|
108 |
+
"Tricky questions": 4.0
|
109 |
},
|
110 |
{
|
111 |
"Model": "THUDM/glm-4-9b-chat",
|
|
|
113 |
"Average": 3.2749145299145295,
|
114 |
"Sentiment": 3.58974358974359,
|
115 |
"Language understanding": 3.455,
|
116 |
+
"Phraseology": 2.78,
|
117 |
+
"Tricky questions": 4.0
|
118 |
},
|
119 |
{
|
120 |
"Model": "mistralai/Mistral-Nemo-Instruct-2407",
|
|
|
122 |
"Average": 3.223675213675214,
|
123 |
"Sentiment": 3.641025641025641,
|
124 |
"Language understanding": 3.29,
|
125 |
+
"Phraseology": 2.74,
|
126 |
+
"Tricky questions": 4.0
|
127 |
},
|
128 |
{
|
129 |
"Model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
|
|
131 |
"Average": 3.172777777777778,
|
132 |
"Sentiment": 3.3333333333333335,
|
133 |
"Language understanding": 3.15,
|
134 |
+
"Phraseology": 3.035,
|
135 |
+
"Tricky questions": 4.0
|
136 |
},
|
137 |
{
|
138 |
"Model": "upstage/SOLAR-10.7B-Instruct-v1.0",
|
|
|
140 |
"Average": 3.1343162393162394,
|
141 |
"Sentiment": 2.967948717948718,
|
142 |
"Language understanding": 3.18,
|
143 |
+
"Phraseology": 3.255,
|
144 |
+
"Tricky questions": 4.0
|
145 |
},
|
146 |
{
|
147 |
"Model": "speakleash/Bielik-7B-Instruct-v0.1",
|
|
|
149 |
"Average": 3.126581196581197,
|
150 |
"Sentiment": 3.58974358974359,
|
151 |
"Language understanding": 3.475,
|
152 |
+
"Phraseology": 2.315,
|
153 |
+
"Tricky questions": 4.0
|
154 |
},
|
155 |
{
|
156 |
"Model": "openchat/openchat-3.5-0106-gemma",
|
|
|
158 |
"Average": 3.08525641025641,
|
159 |
"Sentiment": 3.730769230769231,
|
160 |
"Language understanding": 3.08,
|
161 |
+
"Phraseology": 2.445,
|
162 |
+
"Tricky questions": 4.0
|
163 |
},
|
164 |
{
|
165 |
"Model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
|
|
167 |
"Average": 3.039230769230769,
|
168 |
"Sentiment": 3.0576923076923075,
|
169 |
"Language understanding": 3.175,
|
170 |
+
"Phraseology": 2.885,
|
171 |
+
"Tricky questions": 4.0
|
172 |
},
|
173 |
{
|
174 |
"Model": "mistralai/Mistral-7B-Instruct-v0.3",
|
|
|
176 |
"Average": 3.022307692307692,
|
177 |
"Sentiment": 3.326923076923077,
|
178 |
"Language understanding": 3.06,
|
179 |
+
"Phraseology": 2.68,
|
180 |
+
"Tricky questions": 4.0
|
181 |
},
|
182 |
{
|
183 |
"Model": "berkeley-nest/Starling-LM-7B-alpha",
|
|
|
185 |
"Average": 2.945897435897436,
|
186 |
"Sentiment": 3.0576923076923075,
|
187 |
"Language understanding": 2.925,
|
188 |
+
"Phraseology": 2.855,
|
189 |
+
"Tricky questions": 4.0
|
190 |
},
|
191 |
{
|
192 |
"Model": "openchat/openchat-3.5-0106",
|
|
|
194 |
"Average": 2.8500854700854696,
|
195 |
"Sentiment": 3.16025641025641,
|
196 |
"Language understanding": 2.835,
|
197 |
+
"Phraseology": 2.555,
|
198 |
+
"Tricky questions": 4.0
|
199 |
},
|
200 |
{
|
201 |
"Model": "internlm/internlm2-chat-20b",
|
|
|
203 |
"Average": 2.8237606837606837,
|
204 |
"Sentiment": 3.301282051282051,
|
205 |
"Language understanding": 2.785,
|
206 |
+
"Phraseology": 2.385,
|
207 |
+
"Tricky questions": 4.0
|
208 |
},
|
209 |
{
|
210 |
"Model": "01-ai/Yi-1.5-34B-Chat",
|
|
|
212 |
"Average": 2.7756410256410255,
|
213 |
"Sentiment": 3.076923076923077,
|
214 |
"Language understanding": 2.87,
|
215 |
+
"Phraseology": 2.38,
|
216 |
+
"Tricky questions": 4.0
|
217 |
},
|
218 |
{
|
219 |
"Model": "Voicelab/trurl-2-13b-academic",
|
|
|
221 |
"Average": 2.74042735042735,
|
222 |
"Sentiment": 3.301282051282051,
|
223 |
"Language understanding": 2.755,
|
224 |
+
"Phraseology": 2.165,
|
225 |
+
"Tricky questions": 4.0
|
226 |
},
|
227 |
{
|
228 |
"Model": "google/gemma-2-2b-it",
|
|
|
230 |
"Average": 2.7974786324786325,
|
231 |
"Sentiment": 3.3974358974359,
|
232 |
"Language understanding": 2.9,
|
233 |
+
"Phraseology": 2.095,
|
234 |
+
"Tricky questions": 4.0
|
235 |
},
|
236 |
{
|
237 |
"Model": "Qwen/Qwen2.5-3B-Instruct",
|
|
|
239 |
"Average": 2.734572649572649,
|
240 |
"Sentiment": 2.948717948717949,
|
241 |
"Language understanding": 2.455,
|
242 |
+
"Phraseology": 2.8,
|
243 |
+
"Tricky questions": 4.0
|
244 |
},
|
245 |
{
|
246 |
"Model": "NousResearch/Hermes-3-Llama-3.2-3B",
|
|
|
248 |
"Average": 2.695128205128205,
|
249 |
"Sentiment": 2.6153846153846154,
|
250 |
"Language understanding": 2.705,
|
251 |
+
"Phraseology": 2.765,
|
252 |
+
"Tricky questions": 4.0
|
253 |
},
|
254 |
{
|
255 |
"Model": "ibm-granite/granite-3.1-2b-instruct",
|
|
|
257 |
"Average": 2.397307692307692,
|
258 |
"Sentiment": 3.076923076923077,
|
259 |
"Language understanding": 2.235,
|
260 |
+
"Phraseology": 1.88,
|
261 |
+
"Tricky questions": 4.0
|
262 |
},
|
263 |
{
|
264 |
"Model": "meta-llama/Llama-3.2-1B-Instruct",
|
|
|
266 |
"Average": 2.383974358974359,
|
267 |
"Sentiment": 3.076923076923077,
|
268 |
"Language understanding": 1.735,
|
269 |
+
"Phraseology": 2.34,
|
270 |
+
"Tricky questions": 4.0
|
271 |
},
|
272 |
{
|
273 |
"Model": "microsoft/Phi-3.5-mini-instruct",
|
|
|
275 |
"Average": 2.331965811965812,
|
276 |
"Sentiment": 2.435897435897436,
|
277 |
"Language understanding": 2.135,
|
278 |
+
"Phraseology": 2.425,
|
279 |
+
"Tricky questions": 4.0
|
280 |
},
|
281 |
{
|
282 |
"Model": "meta-llama/Llama-3.2-3B-Instruct",
|
|
|
284 |
"Average": 2.257136752136752,
|
285 |
"Sentiment": 2.7564102564102564,
|
286 |
"Language understanding": 2.295,
|
287 |
+
"Phraseology": 1.72,
|
288 |
+
"Tricky questions": 4.0
|
289 |
},
|
290 |
{
|
291 |
"Model": "h2oai/h2o-danube2-1.8b-chat",
|
|
|
293 |
"Average": 2.1455982905982904,
|
294 |
"Sentiment": 2.371794871794872,
|
295 |
"Language understanding": 1.595,
|
296 |
+
"Phraseology": 2.47,
|
297 |
+
"Tricky questions": 4.0
|
298 |
},
|
299 |
{
|
300 |
"Model": "Qwen/Qwen2.5-1.5B-Instruct",
|
|
|
302 |
"Average": 2.1232905982905983,
|
303 |
"Sentiment": 2.7948717948717947,
|
304 |
"Language understanding": 1.35,
|
305 |
+
"Phraseology": 2.225,
|
306 |
+
"Tricky questions": 4.0
|
307 |
},
|
308 |
{
|
309 |
"Model": "utter-project/EuroLLM-1.7B-Instruct",
|
|
|
311 |
"Average": 2.097863247863248,
|
312 |
"Sentiment": 2.243589743589744,
|
313 |
"Language understanding": 1.79,
|
314 |
+
"Phraseology": 2.26,
|
315 |
+
"Tricky questions": 4.0
|
316 |
},
|
317 |
{
|
318 |
"Model": "LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct",
|
|
|
320 |
"Average": 2.062846282695529,
|
321 |
"Sentiment": 1.9423076923076923,
|
322 |
"Language understanding": 2.1155778894472363,
|
323 |
+
"Phraseology": 2.130653266331658,
|
324 |
+
"Tricky questions": 4.0
|
325 |
},
|
326 |
{
|
327 |
"Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct",
|
|
|
329 |
"Average": 1.9102136752136751,
|
330 |
"Sentiment": 2.275641025641025,
|
331 |
"Language understanding": 1.1,
|
332 |
+
"Phraseology": 2.355,
|
333 |
+
"Tricky questions": 4.0
|
334 |
},
|
335 |
{
|
336 |
"Model": "Qwen/Qwen2.5-0.5B-Instruct",
|
|
|
338 |
"Average": 1.7950427350427354,
|
339 |
"Sentiment": 1.955128205128205,
|
340 |
"Language understanding": 0.835,
|
341 |
+
"Phraseology": 2.595,
|
342 |
+
"Tricky questions": 4.0
|
343 |
},
|
344 |
{
|
345 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-chat",
|
|
|
347 |
"Average": 3.63,
|
348 |
"Sentiment": 3.94,
|
349 |
"Language understanding": 3.61,
|
350 |
+
"Phraseology": 3.35,
|
351 |
+
"Tricky questions": 4.0
|
352 |
},
|
353 |
{
|
354 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-instruct",
|
|
|
356 |
"Average": 3.56,
|
357 |
"Sentiment": 3.88,
|
358 |
"Language understanding": 3.59,
|
359 |
+
"Phraseology": 3.22,
|
360 |
+
"Tricky questions": 4.0
|
361 |
},
|
362 |
{
|
363 |
"Model": "CYFRAGOVPL/Llama-PLLuM-70B-instruct",
|
|
|
365 |
"Average": 3.56,
|
366 |
"Sentiment": 3.78,
|
367 |
"Language understanding": 3.63,
|
368 |
+
"Phraseology": 3.26,
|
369 |
+
"Tricky questions": 4.0
|
370 |
},
|
371 |
{
|
372 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-instruct",
|
373 |
"Params": "46.7B",
|
374 |
+
"Average": 3.5,
|
375 |
"Sentiment": 3.59,
|
376 |
"Language understanding": 3.47,
|
377 |
+
"Phraseology": 3.46,
|
378 |
+
"Tricky questions": 4.0
|
379 |
},
|
380 |
{
|
381 |
"Model": "CYFRAGOVPL/PLLuM-12B-instruct",
|
|
|
383 |
"Average": 3.49,
|
384 |
"Sentiment": 3.71,
|
385 |
"Language understanding": 3.17,
|
386 |
+
"Phraseology": 3.59,
|
387 |
+
"Tricky questions": 4.0
|
388 |
},
|
389 |
{
|
390 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-nc-chat",
|
|
|
392 |
"Average": 3.44,
|
393 |
"Sentiment": 3.76,
|
394 |
"Language understanding": 3.48,
|
395 |
+
"Phraseology": 3.08,
|
396 |
+
"Tricky questions": 4.0
|
397 |
},
|
398 |
{
|
399 |
"Model": "CYFRAGOVPL/PLLuM-8x7B-chat",
|
|
|
401 |
"Average": 3.41,
|
402 |
"Sentiment": 3.44,
|
403 |
"Language understanding": 3.45,
|
404 |
+
"Phraseology": 3.35,
|
405 |
+
"Tricky questions": 4.0
|
406 |
},
|
407 |
{
|
408 |
"Model": "CYFRAGOVPL/PLLuM-12B-chat",
|
|
|
410 |
"Average": 3.32,
|
411 |
"Sentiment": 3.32,
|
412 |
"Language understanding": 3.21,
|
413 |
+
"Phraseology": 3.43,
|
414 |
+
"Tricky questions": 4.0
|
415 |
},
|
416 |
{
|
417 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-instruct",
|
|
|
419 |
"Average": 3.29,
|
420 |
"Sentiment": 3.24,
|
421 |
"Language understanding": 3.31,
|
422 |
+
"Phraseology": 3.32,
|
423 |
+
"Tricky questions": 4.0
|
424 |
},
|
425 |
{
|
426 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-instruct",
|
427 |
"Params": "8.03B",
|
428 |
+
"Average": 3.2,
|
429 |
"Sentiment": 3.24,
|
430 |
+
"Language understanding": 2.9,
|
431 |
+
"Phraseology": 3.46,
|
432 |
+
"Tricky questions": 4.0
|
433 |
},
|
434 |
{
|
435 |
"Model": "CYFRAGOVPL/Llama-PLLuM-8B-chat",
|
|
|
437 |
"Average": 3.14,
|
438 |
"Sentiment": 3.13,
|
439 |
"Language understanding": 2.93,
|
440 |
+
"Phraseology": 3.36,
|
441 |
+
"Tricky questions": 4.0
|
442 |
},
|
443 |
{
|
444 |
"Model": "CYFRAGOVPL/PLLuM-12B-nc-chat",
|
|
|
446 |
"Average": 3.33,
|
447 |
"Sentiment": 3.22,
|
448 |
"Language understanding": 3.23,
|
449 |
+
"Phraseology": 3.54,
|
450 |
+
"Tricky questions": 4.0
|
451 |
},
|
452 |
{
|
453 |
"Model": "Qwen/Qwen2.5-72B-Instruct",
|
|
|
455 |
"Average": 3.9923076923076923,
|
456 |
"Sentiment": 4.076923076923077,
|
457 |
"Language understanding": 3.97,
|
458 |
+
"Phraseology": 3.93,
|
459 |
+
"Tricky questions": 4.0
|
460 |
},
|
461 |
{
|
462 |
"Model": "Qwen/Qwen2.5-32B-Instruct",
|
|
|
464 |
"Average": 3.8047008547008545,
|
465 |
"Sentiment": 3.8141025641025643,
|
466 |
"Language understanding": 3.565,
|
467 |
+
"Phraseology": 4.035,
|
468 |
+
"Tricky questions": 4.0
|
469 |
},
|
470 |
{
|
471 |
"Model": "mistralai/Mistral-Small-24B-Instruct-2501",
|
|
|
473 |
"Average": 3.79508547008547,
|
474 |
"Sentiment": 3.91025641025641,
|
475 |
"Language understanding": 3.6,
|
476 |
+
"Phraseology": 3.875,
|
477 |
+
"Tricky questions": 4.0
|
478 |
},
|
479 |
{
|
480 |
"Model": "meta-llama/Llama-3.3-70B-Instruct",
|
|
|
482 |
"Average": 3.7332905982905977,
|
483 |
"Sentiment": 4.294871794871795,
|
484 |
"Language understanding": 3.865,
|
485 |
+
"Phraseology": 3.04,
|
486 |
+
"Tricky questions": 4.0
|
487 |
},
|
488 |
{
|
489 |
"Model": "Qwen/Qwen2.5-14B-Instruct",
|
|
|
491 |
"Average": 3.61508547008547,
|
492 |
"Sentiment": 3.91025641025641,
|
493 |
"Language understanding": 3.565,
|
494 |
+
"Phraseology": 3.37,
|
495 |
+
"Tricky questions": 4.0
|
496 |
},
|
497 |
{
|
498 |
"Model": "microsoft/phi-4",
|
|
|
500 |
"Average": 3.4976495726495727,
|
501 |
"Sentiment": 3.717948717948718,
|
502 |
"Language understanding": 3.54,
|
503 |
+
"Phraseology": 3.235,
|
504 |
+
"Tricky questions": 4.0
|
505 |
},
|
506 |
{
|
507 |
"Model": "Qwen/Qwen2.5-7B-Instruct",
|
|
|
509 |
"Average": 3.2258974358974357,
|
510 |
"Sentiment": 3.5576923076923075,
|
511 |
"Language understanding": 3.025,
|
512 |
+
"Phraseology": 3.095,
|
513 |
+
"Tricky questions": 4.0
|
514 |
},
|
515 |
{
|
516 |
"Model": "microsoft/Phi-4-mini-instruct",
|
|
|
518 |
"Average": 2.455769230769231,
|
519 |
"Sentiment": 2.6923076923076925,
|
520 |
"Language understanding": 2.43,
|
521 |
+
"Phraseology": 2.245,
|
522 |
+
"Tricky questions": 4.0
|
523 |
}
|
524 |
]
|