import json import streamlit as st import pandas as pd import seaborn as sns import plotly.graph_objects as go import plotly.express as px from st_social_media_links import SocialMediaIcons AVERAGE_COLUMN_NAME = "Average" SENTIMENT_COLUMN_NAME = "Sentiment" RESULTS_COLUMN_NAME = "Results" UNDERSTANDING_COLUMN_NAME = "Language understanding" PHRASEOLOGY_COLUMN_NAME = "Phraseology" # Function to load data from JSON file def load_data(file_path): with open(file_path, 'r', encoding='utf-8') as file: data = json.load(file) return pd.DataFrame(data) # Function to style the DataFrame def style_dataframe(df: pd.DataFrame): df[RESULTS_COLUMN_NAME] = df.apply(lambda row: [row[SENTIMENT_COLUMN_NAME], row[UNDERSTANDING_COLUMN_NAME], row[PHRASEOLOGY_COLUMN_NAME]], axis=1) # Insert the new column after the 'Average' column cols = list(df.columns) cols.insert(cols.index(AVERAGE_COLUMN_NAME) + 1, cols.pop(cols.index(RESULTS_COLUMN_NAME))) df = df[cols] # Create a color ramp using Seaborn return df def styler(df: pd.DataFrame): palette = sns.color_palette("RdYlGn", as_cmap=True) styled_df = df.style.background_gradient(cmap=palette, subset=[AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME]).format(precision=2) return styled_df ### Streamlit app st.set_page_config(layout="wide") st.markdown(""" """, unsafe_allow_html=True) ### Prepare layout st.subheader("") st.markdown(""" """, unsafe_allow_html=True) # --- Colors info --- # Primary Color: #FDA428 # Secondary Color: #A85E00 # Grey Color: #7B7B7B # Background Color: #1C1C1C # {'LOW': '#7B7B7B', 'MEDIUM': '#A85E00', 'HIGH': '#FDA428'} # ---------------------------------------------------------- ### Row: 1 --> Title + links to SpeakLeash.org website / GitHub / X (Twitter) social_media_links = [ "https://discord.com/invite/ZJwCMrxwT7", "https://github.com/speakleash", "https://x.com/Speak_Leash", "https://www.linkedin.com/company/speakleash/", "https://www.facebook.com/Speakleash/" ] social_media_links_colors = [ "#FFFFFF", "#FFFFFF", "#FFFFFF", "#FFFFFF", "#FFFFFF" ] social_media_icons = SocialMediaIcons(social_media_links, social_media_links_colors) social_media_icons.render(justify_content='right') # Add logo, title, and subheader in a flexible container with equal spacing st.markdown("""
SpeakLeash Logo

Phrase-Bench

Understanding of Polish text, sentiment and phraseological compounds

""", unsafe_allow_html=True) # Create tabs tab1, tab2 = st.tabs([RESULTS_COLUMN_NAME, "Opis"]) with tab1: st.write("This benchmark evaluates the ability of language models to correctly interpret Polish texts with complex implicatures, such as sarcasm and idiomatic expressions. Models are assessed on sentiment analysis, understanding of true intentions, and identification of idiomatic phrases.") # Display the styled DataFrame data = load_data('data.json') data['Params'] = data['Params'].str.replace('B', '') data = data.sort_values(by=AVERAGE_COLUMN_NAME, ascending=False) styled_df_show = style_dataframe(data) styled_df_show = styler(styled_df_show) st.data_editor(styled_df_show, column_config={ "Params": st.column_config.NumberColumn("Params [B]", format="%.1f"), AVERAGE_COLUMN_NAME: st.column_config.NumberColumn(AVERAGE_COLUMN_NAME), RESULTS_COLUMN_NAME: st.column_config.BarChartColumn( RESULTS_COLUMN_NAME, help="Summary of the results of each task", y_min=0,y_max=5,), SENTIMENT_COLUMN_NAME: st.column_config.NumberColumn(SENTIMENT_COLUMN_NAME, help='Ability to analyze sentiment'), PHRASEOLOGY_COLUMN_NAME: st.column_config.NumberColumn(PHRASEOLOGY_COLUMN_NAME, help='Ability to understand phraseological compounds'), UNDERSTANDING_COLUMN_NAME: st.column_config.NumberColumn(UNDERSTANDING_COLUMN_NAME, help='Ability to understand language'), }, hide_index=True, disabled=True, height=500) st.divider() # Add selection for models and create a bar chart for selected models using the AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME selected_models = st.multiselect("Select models to compare", data["Model"].unique()) selected_data = data[data["Model"].isin(selected_models)] categories = [AVERAGE_COLUMN_NAME, SENTIMENT_COLUMN_NAME, PHRASEOLOGY_COLUMN_NAME, UNDERSTANDING_COLUMN_NAME] if selected_models: # Kolorki do wyboru: # colors = px.colors.sample_colorscale("viridis", len(selected_models)+1) colors = px.colors.qualitative.G10[:len(selected_models)] # Create a chart with lines for each model for each category fig = go.Figure() for model, color in zip(selected_models, colors): values = selected_data[selected_data['Model'] == model][categories].values.flatten().tolist() values += values[:1] # Repeat the first value to close the polygon fig.add_trace(go.Scatterpolar( r=values, theta=categories + [categories[0]], # Repeat the first category to close the polygon name=model, line_color=color, fillcolor=color )) fig.update_layout( polar=dict( radialaxis=dict( visible=True, range=[0, 5] )), showlegend=True, legend=dict(orientation="h", yanchor="top", y=-0.2, xanchor="center", x=0.5), title="Comparison of Selected Models", template="plotly_dark" ) st.plotly_chart(fig) # Create a chart with bars for each model for each category fig_bars = go.Figure() for model, color in zip(selected_models, colors): values = selected_data[selected_data['Model'] == model][categories].values.flatten().tolist() fig_bars.add_trace(go.Bar( x=categories, y=values, name=model, marker_color=color )) # Update layout to use a custom color scale fig_bars.update_layout( showlegend=True, legend=dict(orientation="h", yanchor="top", y=-0.3, xanchor="center", x=0.5), title="Comparison of Selected Models", yaxis_title="Score", template="plotly_dark" ) st.plotly_chart(fig_bars) with tab2: st.header("Opis") st.write("Tutaj znajduje się trochę tekstu jako wypełniacz.") st.write("To jest przykładowy tekst, który może zawierać dodatkowe informacje o benchmarku, metodologii, itp.") # Ending :) st.divider() st.markdown(""" ### Authors: - [Jan Sowa](https://www.linkedin.com/in/janpiotrsowa) - leadership, writing texts, benchmark code - [Agnieszka Kosiak](https://www.linkedin.com/in/agn-kosiak/) - writing texts - [Magdalena Krawczyk](https://www.linkedin.com/in/magdalena-krawczyk-7810942ab/) - writing texts, labeling - [Remigiusz Kinas](https://www.linkedin.com/in/remigiusz-kinas/) - methodological support - [Krzysztof Wróbel](https://www.linkedin.com/in/wrobelkrzysztof/) - engineering, methodological support - [Szymon Baczyński](https://www.linkedin.com/in/szymon-baczynski/) - front-end / streamlit assistant """) # Run the app with `streamlit run your_script.py`