kollis commited on
Commit
74e0921
·
1 Parent(s): 4116995

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -0
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ import yfinance as yf
4
+ from datetime import timedelta,datetime
5
+ import pytz
6
+ import matplotlib.pyplot as plt
7
+ from PIL import Image
8
+ import numpy as np
9
+ from IPython.display import display
10
+ import functions
11
+
12
+ nifty_list = ["ADANIENT","ADANIPORTS","APOLLOHOSP","ASIANPAINT","AXISBANK","BAJAJ-AUTO","BAJFINANCE","BAJAJFINSV","BPCL","BHARTIARTL","BRITANNIA","CIPLA","COALINDIA","DIVISLAB","DRREDDY","EICHERMOT","GRASIM","HCLTECH","HDFCBANK","HDFCLIFE","HEROMOTOCO","HINDALCO","HINDUNILVR","ICICIBANK","ITC","INDUSINDBK","INFY","JSWSTEEL","KOTAKBANK","LTIM","LT","M&M","MARUTI","NTPC","NESTLEIND","ONGC","POWERGRID","RELIANCE","SBILIFE","SBIN","SUNPHARMA","TCS","TATACONSUM","TATAMOTORS","TATASTEEL","TECHM","TITAN","UPL","ULTRACEMCO","WIPRO","%5ENSEI"]
13
+
14
+ class Stocks:
15
+ def __init__(self, symbol):
16
+ self.symbol = symbol
17
+ self.data = self.fetch_data()
18
+
19
+ def fetch_data(self):
20
+ try:
21
+ # Construct the ticker symbol based on the first letter
22
+ ticker_symbol = self.symbol if self.symbol[0] == '%' else f"{self.symbol}.ns"
23
+
24
+ # Fetch historical data based on the constructed ticker symbol
25
+ data = yf.Ticker(ticker_symbol).history(period="10y", auto_adjust=True)
26
+ return data
27
+ except Exception as e:
28
+ print(f"Error fetching data for {self.symbol}: {e}")
29
+ return None
30
+
31
+ def currentdateavailability(self, curDate):
32
+ if curDate in self.data.index:
33
+ return curDate
34
+ else:
35
+ # Convert curDate to datetime and subtract one day
36
+ curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
37
+ newcDate_dt = curDate_dt - timedelta(days=1)
38
+
39
+ # Convert newcDate to string and call the method again
40
+ newcDate_str = newcDate_dt.strftime("%Y-%m-%d")
41
+ return self.currentdateavailability(newcDate_str)
42
+
43
+ def CurPrice(self, curDate=None):
44
+ curDate = self.currentdateavailability(curDate)
45
+ return self.data.loc[curDate, 'Close'] if curDate is not None else self.data.iloc[-1]['Close']
46
+
47
+ def NDayRet(self, N, curDate):
48
+ curDate = self.currentdateavailability(curDate)
49
+ NDate = self.data.index[self.data.index.get_loc(curDate) - N]
50
+ return self.data.loc[curDate, 'Close'] - self.data.loc[NDate, 'Close']
51
+
52
+ def DailyRet(self, curDate):
53
+ curDate = self.currentdateavailability(curDate)
54
+ return self.data.loc[curDate, 'Close'] - self.data.loc[curDate, 'Open']
55
+
56
+
57
+ def Last30daysPrice(self, curDate=None):
58
+ if curDate is not None:
59
+ curDate = self.currentdateavailability(curDate)
60
+ curDate_index = self.data.index.get_loc(curDate)
61
+ return self.data.iloc[curDate_index - 30:curDate_index]['Close'].values
62
+ else:
63
+ return self.data.iloc[-30:]['Close'].values
64
+
65
+
66
+ # This below function returns last 30 calender days close prices i.e. 30 days including holidays so less than 30 days close values are returned. Above fuction gives last 30 trading day close prices.
67
+ # def Last30daysPrice(self, curDate=None):
68
+ # curDate = self.currentdateavailability(curDate)
69
+
70
+ # if curDate is not None:
71
+ # # Calculate date 30 days ago
72
+ # curDate_dt = datetime.strptime(curDate, "%Y-%m-%d")
73
+ # days_ago_30 = curDate_dt - timedelta(days=30)
74
+ # thirty_days_ago_date = days_ago_30.strftime("%Y-%m-%d")
75
+
76
+ # # Ensure the availability of 30 days ago date
77
+ # thirty_days_ago_date = self.currentdateavailability(thirty_days_ago_date)
78
+
79
+ # # Get the index of curDate and 30 days ago date in the data
80
+ # curDate_index = self.data.index.get_loc(curDate)
81
+ # thirty_days_ago_index = self.data.index.get_loc(thirty_days_ago_date)
82
+
83
+ # # Return close values from 30 days ago to curDate in an array
84
+ # return self.data.iloc[thirty_days_ago_index:curDate_index + 1]['Close'].values
85
+ # else:
86
+ # return self.data.iloc[-30:]['Close'].values
87
+
88
+
89
+ stocks_dict = {symbol: Stocks(symbol) for symbol in nifty_list}
90
+
91
+ nifty_stocks = {symbol: stocks_dict[symbol] for symbol in nifty_list[:-1]}
92
+
93
+ nifty50 = {"nifty50": stocks_dict[nifty_list[-1]]}
94
+
95
+ title = "Portfolio tracking Nifty50 Stocks"
96
+ description = """
97
+ This App Demo is made for an Assignment. This Demo takes Initial Equity, Start Date, End Date, Time Window as inputs
98
+ """
99
+
100
+
101
+ iface = gr.Interface(
102
+ fn=final_function,
103
+ inputs=[
104
+ gr.Textbox(label="Equity"),
105
+ gr.Textbox(label="Start Date"),
106
+ gr.Textbox(label="End Date"),
107
+ gr.Textbox(label="N-day Window")
108
+ ],
109
+ outputs=[
110
+ gr.Image(type="pil"),
111
+ gr.Textbox(label="Strategy CAGR (%)"),
112
+ gr.Textbox(label="Strategy Volatility (%)"),
113
+ gr.Textbox(label="Strategy Sharpe Ratio"),
114
+ gr.Textbox(label="Benchmark CAGR (%)"),
115
+ gr.Textbox(label="Benchmark Volatility (%)"),
116
+ gr.Textbox(label="Benchmark Sharpe Ratio")
117
+ ],
118
+ title=title,
119
+ description=description,
120
+
121
+ )
122
+
123
+ if __name__ == "__main__":
124
+ iface.launch()