Spaces:
Sleeping
Sleeping
Create function.py
Browse files- function.py +181 -0
function.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import yfinance as yf
|
4 |
+
from datetime import timedelta,datetime
|
5 |
+
import pytz
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
from PIL import Image
|
8 |
+
import numpy as np
|
9 |
+
from IPython.display import display
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
def dateoffset(input_date_str):
|
14 |
+
|
15 |
+
input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d")
|
16 |
+
|
17 |
+
|
18 |
+
new_date_dt = input_date_dt - timedelta(days=1)
|
19 |
+
|
20 |
+
|
21 |
+
new_date_str = new_date_dt.strftime("%Y-%m-%d")
|
22 |
+
|
23 |
+
return new_date_str
|
24 |
+
|
25 |
+
|
26 |
+
def setdates(startdate, enddate):
|
27 |
+
while startdate not in nifty50["nifty50"].data.index:
|
28 |
+
startdate = dateoffset(startdate)
|
29 |
+
|
30 |
+
while enddate not in nifty50["nifty50"].data.index:
|
31 |
+
enddate = dateoffset(enddate)
|
32 |
+
|
33 |
+
return startdate, enddate
|
34 |
+
|
35 |
+
|
36 |
+
def organisedata(startdate, enddate):
|
37 |
+
|
38 |
+
startdate, enddate = setdates(startdate, enddate)
|
39 |
+
|
40 |
+
|
41 |
+
symbols = list(nifty_stocks.keys())
|
42 |
+
|
43 |
+
|
44 |
+
common_index = nifty50["nifty50"].data.loc[startdate:enddate].index
|
45 |
+
|
46 |
+
|
47 |
+
data_frame = pd.DataFrame(index=symbols, columns=common_index)
|
48 |
+
|
49 |
+
|
50 |
+
for symbol, stock_object in nifty_stocks.items():
|
51 |
+
stock_data = stock_object.data.loc[startdate:enddate, 'Close']
|
52 |
+
data_frame.loc[symbol] = stock_data.reindex(common_index).values
|
53 |
+
|
54 |
+
return data_frame
|
55 |
+
|
56 |
+
def previoustimeframedata(n, startdate):
|
57 |
+
|
58 |
+
startdate_dt = pd.to_datetime(startdate)
|
59 |
+
|
60 |
+
|
61 |
+
ndaysagodate = startdate_dt - timedelta(days=int(n))
|
62 |
+
|
63 |
+
|
64 |
+
ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d")
|
65 |
+
startdate_str = startdate_dt.strftime("%Y-%m-%d")
|
66 |
+
|
67 |
+
|
68 |
+
return organisedata(ndaysagodate_str, startdate_str)
|
69 |
+
|
70 |
+
def portfoliooperations(equity,startdate,ndaywindow,portfolio):
|
71 |
+
|
72 |
+
startdate_dt = pd.to_datetime(startdate)
|
73 |
+
windowenddate = startdate_dt + timedelta(days=int(ndaywindow))
|
74 |
+
windowenddate_str = windowenddate.strftime("%Y-%m-%d")
|
75 |
+
|
76 |
+
startdate,windowenddate = setdates(startdate,windowenddate_str)
|
77 |
+
|
78 |
+
window_data = organisedata(startdate,windowenddate)
|
79 |
+
|
80 |
+
differences = window_data.iloc[:, -1] - window_data.iloc[:, 0]
|
81 |
+
|
82 |
+
next_portfolio = differences[differences > 0].index.tolist()
|
83 |
+
|
84 |
+
|
85 |
+
portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum()
|
86 |
+
|
87 |
+
|
88 |
+
multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0
|
89 |
+
|
90 |
+
|
91 |
+
portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value'])
|
92 |
+
|
93 |
+
for date in window_data.columns:
|
94 |
+
|
95 |
+
portfolio_sum = window_data.loc[portfolio, date].sum()
|
96 |
+
|
97 |
+
portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier
|
98 |
+
|
99 |
+
|
100 |
+
return next_portfolio,portfolio_value
|
101 |
+
|
102 |
+
def mainfunction (equity,startdate,enddate,ndaywindow):
|
103 |
+
|
104 |
+
pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here
|
105 |
+
|
106 |
+
differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0]
|
107 |
+
|
108 |
+
portfolio = differences[differences > 0].index.tolist() # No Errors untill here
|
109 |
+
|
110 |
+
portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata'))
|
115 |
+
|
116 |
+
while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)):
|
117 |
+
|
118 |
+
portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio)
|
119 |
+
|
120 |
+
portfolio_value = pd.concat([portfolio_value, new_portfolio_value])
|
121 |
+
|
122 |
+
startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d")
|
123 |
+
|
124 |
+
equity = portfolio_value.iloc[-1, 0]
|
125 |
+
|
126 |
+
return portfolio_value
|
127 |
+
|
128 |
+
def calculate_cagr(series):
|
129 |
+
total_return = (series.iloc[-1] / series.iloc[0]) - 1
|
130 |
+
num_years = len(series) / 252
|
131 |
+
cagr = (1 + total_return) ** (1 / num_years) - 1
|
132 |
+
return cagr * 100
|
133 |
+
|
134 |
+
|
135 |
+
def calculate_volatility(series):
|
136 |
+
return series.pct_change().std() * np.sqrt(252) * 100
|
137 |
+
|
138 |
+
|
139 |
+
def calculate_sharpe_ratio(series, risk_free_rate=0):
|
140 |
+
cagr = calculate_cagr(series)
|
141 |
+
volatility = calculate_volatility(series)
|
142 |
+
sharpe_ratio = (cagr - risk_free_rate) / volatility
|
143 |
+
return sharpe_ratio
|
144 |
+
|
145 |
+
|
146 |
+
def final_function(equity,startdate,enddate,ndaywindow):
|
147 |
+
|
148 |
+
equity = int(equity)
|
149 |
+
ndaywindow = int(ndaywindow)
|
150 |
+
|
151 |
+
portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow)
|
152 |
+
nifty_data = nifty50["nifty50"].data
|
153 |
+
subset_data = nifty_data[startdate:enddate]
|
154 |
+
initial_nifty = subset_data['Close'][0]
|
155 |
+
nifty_dataseries = (equity/initial_nifty)*subset_data['Close']
|
156 |
+
plt.figure(figsize=(10, 6))
|
157 |
+
plt.plot(portfolio_value['value'], label='Strategy')
|
158 |
+
plt.plot(nifty_dataseries, label='Nifty50 as Benchmark')
|
159 |
+
plt.title('Benchmark vs Strategy')
|
160 |
+
plt.xlabel('Date')
|
161 |
+
plt.ylabel('Close Price')
|
162 |
+
plt.legend()
|
163 |
+
|
164 |
+
|
165 |
+
image_path = "output_plot.png"
|
166 |
+
plt.savefig(image_path)
|
167 |
+
plt.close()
|
168 |
+
|
169 |
+
|
170 |
+
image = Image.open(image_path)
|
171 |
+
|
172 |
+
strategy_cagr = calculate_cagr(portfolio_value['value'])
|
173 |
+
strategy_volatility = calculate_volatility(portfolio_value['value'])
|
174 |
+
strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value'])
|
175 |
+
|
176 |
+
benchmark_cagr = calculate_cagr(nifty_dataseries)
|
177 |
+
benchmark_volatility = calculate_volatility(nifty_dataseries)
|
178 |
+
benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries)
|
179 |
+
|
180 |
+
|
181 |
+
return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio
|