import gradio as gr import pandas as pd import yfinance as yf from datetime import timedelta,datetime import pytz import matplotlib.pyplot as plt from PIL import Image import numpy as np def dateoffset(input_date_str): input_date_dt = datetime.strptime(input_date_str, "%Y-%m-%d") new_date_dt = input_date_dt - timedelta(days=1) new_date_str = new_date_dt.strftime("%Y-%m-%d") return new_date_str def setdates(startdate, enddate): while startdate not in nifty50["nifty50"].data.index: startdate = dateoffset(startdate) while enddate not in nifty50["nifty50"].data.index: enddate = dateoffset(enddate) return startdate, enddate def organisedata(startdate, enddate): startdate, enddate = setdates(startdate, enddate) symbols = list(nifty_stocks.keys()) common_index = nifty50["nifty50"].data.loc[startdate:enddate].index data_frame = pd.DataFrame(index=symbols, columns=common_index) for symbol, stock_object in nifty_stocks.items(): stock_data = stock_object.data.loc[startdate:enddate, 'Close'] data_frame.loc[symbol] = stock_data.reindex(common_index).values return data_frame def previoustimeframedata(n, startdate): startdate_dt = pd.to_datetime(startdate) ndaysagodate = startdate_dt - timedelta(days=int(n)) ndaysagodate_str = ndaysagodate.strftime("%Y-%m-%d") startdate_str = startdate_dt.strftime("%Y-%m-%d") return organisedata(ndaysagodate_str, startdate_str) def portfoliooperations(equity,startdate,ndaywindow,portfolio): startdate_dt = pd.to_datetime(startdate) windowenddate = startdate_dt + timedelta(days=int(ndaywindow)) windowenddate_str = windowenddate.strftime("%Y-%m-%d") startdate,windowenddate = setdates(startdate,windowenddate_str) window_data = organisedata(startdate,windowenddate) differences = window_data.iloc[:, -1] - window_data.iloc[:, 0] next_portfolio = differences[differences > 0].index.tolist() portfolio_sum = window_data.loc[portfolio, window_data.columns[0]].sum() multiplier = equity / portfolio_sum if portfolio_sum != 0 else 0 portfolio_value = pd.DataFrame(index=window_data.columns, columns=['value']) for date in window_data.columns: portfolio_sum = window_data.loc[portfolio, date].sum() portfolio_value.loc[date, 'value'] = portfolio_sum * multiplier return next_portfolio,portfolio_value def mainfunction (equity,startdate,enddate,ndaywindow): pastwindow = previoustimeframedata(n=ndaywindow,startdate=startdate) # No Errors untill here differences = pastwindow.iloc[:, -1] - pastwindow.iloc[:, 0] portfolio = differences[differences > 0].index.tolist() # No Errors untill here portfolio,portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio) enddate_tz = datetime.strptime(enddate,"%Y-%m-%d").replace(tzinfo=pytz.timezone('Asia/Kolkata')) while portfolio_value.index[-1] < pd.to_datetime(enddate_tz) - timedelta(days=int(ndaywindow)): portfolio,new_portfolio_value = portfoliooperations(equity=equity,startdate=startdate,ndaywindow=ndaywindow,portfolio=portfolio) portfolio_value = pd.concat([portfolio_value, new_portfolio_value]) startdate = (pd.to_datetime(startdate)+ timedelta(days=int(ndaywindow))).strftime("%Y-%m-%d") equity = portfolio_value.iloc[-1, 0] return portfolio_value def calculate_cagr(series): total_return = (series.iloc[-1] / series.iloc[0]) - 1 num_years = len(series) / 252 cagr = (1 + total_return) ** (1 / num_years) - 1 return cagr * 100 def calculate_volatility(series): return series.pct_change().std() * np.sqrt(252) * 100 def calculate_sharpe_ratio(series, risk_free_rate=0): cagr = calculate_cagr(series) volatility = calculate_volatility(series) sharpe_ratio = (cagr - risk_free_rate) / volatility return sharpe_ratio def final_function(equity,startdate,enddate,ndaywindow): equity = int(equity) ndaywindow = int(ndaywindow) portfolio_value = mainfunction(equity=equity,startdate=startdate,enddate=enddate,ndaywindow=ndaywindow) nifty_data = nifty50["nifty50"].data subset_data = nifty_data[startdate:enddate] initial_nifty = subset_data['Close'][0] nifty_dataseries = (equity/initial_nifty)*subset_data['Close'] plt.figure(figsize=(10, 6)) plt.plot(portfolio_value['value'], label='Strategy') plt.plot(nifty_dataseries, label='Nifty50 as Benchmark') plt.title('Benchmark vs Strategy') plt.xlabel('Date') plt.ylabel('Close Price') plt.legend() image_path = "output_plot.png" plt.savefig(image_path) plt.close() image = Image.open(image_path) strategy_cagr = calculate_cagr(portfolio_value['value']) strategy_volatility = calculate_volatility(portfolio_value['value']) strategy_sharpe_ratio = calculate_sharpe_ratio(portfolio_value['value']) benchmark_cagr = calculate_cagr(nifty_dataseries) benchmark_volatility = calculate_volatility(nifty_dataseries) benchmark_sharpe_ratio = calculate_sharpe_ratio(nifty_dataseries) return image, strategy_cagr, strategy_volatility, strategy_sharpe_ratio, benchmark_cagr, benchmark_volatility, benchmark_sharpe_ratio