File size: 13,116 Bytes
5b8270b
 
 
 
 
d9daf8e
 
5b8270b
d9daf8e
5b8270b
 
d9daf8e
 
 
 
5b8270b
d9daf8e
9e458cc
5b8270b
 
 
 
 
d9daf8e
b971c5b
 
 
d9daf8e
 
b971c5b
 
 
 
 
 
d9daf8e
b971c5b
d9daf8e
2754ff7
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8417867
d9daf8e
 
 
 
 
d3dc811
d9daf8e
8417867
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8417867
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8417867
d9daf8e
 
8417867
d9daf8e
 
 
8417867
d9daf8e
 
 
 
 
 
b090ad7
8417867
 
 
5b8270b
8417867
d9daf8e
 
5b8270b
 
 
d9daf8e
 
 
 
 
8417867
 
be668a4
d9daf8e
 
 
 
 
 
 
 
 
 
 
de3f8ed
 
d9daf8e
 
 
 
 
de3f8ed
 
d9daf8e
5b8270b
be668a4
 
b214a4f
 
78f9ab5
 
1d353cd
 
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8270b
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8270b
ca7eb57
e0e61bb
ca7eb57
5b8270b
 
d9daf8e
90c3920
d9daf8e
5b8270b
d9daf8e
 
 
 
 
8417867
 
d9daf8e
 
 
 
de3f8ed
d9daf8e
 
fed90e8
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
097eb9b
d9daf8e
 
 
 
 
 
 
249e9e4
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
de3f8ed
d9daf8e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b8270b
d9daf8e
 
 
 
8417867
d9daf8e
 
 
 
8417867
d9daf8e
 
 
 
 
 
 
 
 
5b8270b
 
8417867
d9daf8e
 
5b8270b
d9daf8e
e982174
d9daf8e
 
 
 
 
 
 
 
 
 
e982174
5b8270b
d9daf8e
5b8270b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import gradio as gr
import numpy as np
import spaces
import torch
import random
import json
import os
from PIL import Image
from kontext_pipeline import FluxKontextPipeline
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
from safetensors.torch import load_file
import requests
import re

# Load Kontext model
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
MAX_SEED = np.iinfo(np.int32).max

transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")

# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)

with open("flux_loras.json", "r") as file:
    data = json.load(file)
    flux_loras_raw = [
        {
            "image": item["image"],
            "title": item["title"],
            "repo": item["repo"],
            "trigger_word": item.get("trigger_word", ""),
            "trigger_position": item.get("trigger_position", "prepend"),
            "weights": item.get("weights", "pytorch_lora_weights.safetensors"),
        }
        for item in data
    ]
print(f"Loaded {len(flux_loras_raw)} LoRAs from JSON")
# Global variables for LoRA management
current_lora = None
lora_cache = {}

def load_lora_weights(repo_id, weights_filename):
    """Load LoRA weights from HuggingFace"""
    try:
        if repo_id not in lora_cache:
            lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
            lora_cache[repo_id] = lora_path
        return lora_cache[repo_id]
    except Exception as e:
        print(f"Error loading LoRA from {repo_id}: {e}")
        return None

def update_selection(selected_state: gr.SelectData, flux_loras):
    """Update UI when a LoRA is selected"""
    if selected_state.index >= len(flux_loras):
        return "### No LoRA selected", gr.update(), None
    
    lora_repo = flux_loras[selected_state.index]["repo"]
    trigger_word = flux_loras[selected_state.index]["trigger_word"]
    
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
    new_placeholder = f"optional description, e.g. 'a man with glasses and a beard'"
    
    return updated_text, gr.update(placeholder=new_placeholder), selected_state.index

def get_huggingface_lora(link):
    """Download LoRA from HuggingFace link"""
    split_link = link.split("/")
    if len(split_link) == 2:
        try:
            model_card = ModelCard.load(link)
            trigger_word = model_card.data.get("instance_prompt", "")
            
            fs = HfFileSystem()
            list_of_files = fs.ls(link, detail=False)
            safetensors_file = None
            
            for file in list_of_files:
                if file.endswith(".safetensors") and "lora" in file.lower():
                    safetensors_file = file.split("/")[-1]
                    break
            
            if not safetensors_file:
                safetensors_file = "pytorch_lora_weights.safetensors"
            
            return split_link[1], safetensors_file, trigger_word
        except Exception as e:
            raise Exception(f"Error loading LoRA: {e}")
    else:
        raise Exception("Invalid HuggingFace repository format")

def load_custom_lora(link):
    """Load custom LoRA from user input"""
    if not link:
        return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None
    
    try:
        repo_name, weights_file, trigger_word = get_huggingface_lora(link)
        
        card = f'''
        <div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
            <span><strong>Loaded custom LoRA:</strong></span>
            <div style="margin-top: 8px;">
                <h4>{repo_name}</h4>
                <small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
            </div>
        </div>
        '''
        
        custom_lora_data = {
            "repo": link,
            "weights": weights_file,
            "trigger_word": trigger_word
        }
        
        return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None
    
    except Exception as e:
        return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None

def remove_custom_lora():
    """Remove custom LoRA"""
    return "", gr.update(visible=False), gr.update(visible=False), None, None

def classify_gallery(flux_loras):
    """Sort gallery by likes"""
    sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
    return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery

def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.75, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Wrapper function to handle state serialization"""
    return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress)

@spaces.GPU
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
    """Generate image with selected LoRA"""
    global current_lora, pipe
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    
    # Determine which LoRA to use
    lora_to_use = None
    if custom_lora:
        lora_to_use = custom_lora
    elif selected_index is not None and flux_loras and selected_index < len(flux_loras):
        lora_to_use = flux_loras[selected_index]
    print(f"Loaded {len(flux_loras)} LoRAs from JSON")
    # Load LoRA if needed
    if lora_to_use and lora_to_use != current_lora:
        try:
            # Unload current LoRA
            if current_lora:
                pipe.unload_lora_weights()
            
            # Load new LoRA
            lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
            if lora_path:
                pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
                pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale])
                print(f"loaded: {lora_path} with scale {lora_scale}")
                current_lora = lora_to_use
            
        except Exception as e:
            print(f"Error loading LoRA: {e}")
            # Continue without LoRA
    else:
        print(f"using already loaded lora: {lora_to_use}")
    
    input_image = input_image.convert("RGB")
    # Add trigger word to prompt
    trigger_word = lora_to_use["trigger_word"]
    if trigger_word == ", How2Draw":
        prompt = f"create a How2Draw sketch of the person of the photo {prompt}, maintain the facial identity of the person and general features"
    elif trigger_word == ", video game screenshot in the style of THSMS":
        prompt = f"create a video game screenshot in the style of THSMS with the person from the photo, {prompt}. maintain the facial identity of the person and general features"
    else:
        prompt = f"convert the style of this portrait photo to {trigger_word} while maintaining the identity of the person. {prompt}. Make sure to maintain the person's facial identity and features, while still changing the overall style to {trigger_word}."
    
    try:
        image = pipe(
            image=input_image, 
            prompt=prompt,
            guidance_scale=guidance_scale,
            generator=torch.Generator().manual_seed(seed),
        ).images[0]
        
        return image, seed, gr.update(visible=True)
    
    except Exception as e:
        print(f"Error during inference: {e}")
        return None, seed, gr.update(visible=False)

# CSS styling
css = """
#main_app {
    display: flex;
    gap: 20px;
}
#box_column {
    min-width: 400px;
}
#selected_lora {
    color: #2563eb;
    font-weight: bold;
}
#prompt {
    flex-grow: 1;
}
#run_button {
    background: linear-gradient(45deg, #2563eb, #3b82f6);
    color: white;
    border: none;
    padding: 8px 16px;
    border-radius: 6px;
    font-weight: bold;
}
.custom_lora_card {
    background: #f8fafc;
    border: 1px solid #e2e8f0;
    border-radius: 8px;
    padding: 12px;
    margin: 8px 0;
}
#gallery{
    overflow: scroll !important
}
"""

# Create Gradio interface
with gr.Blocks(css=css) as demo:
    gr_flux_loras = gr.State(value=flux_loras_raw)
    
    title = gr.HTML(
        """<h1> FLUX.1 Kontext Portrait 👩🏻‍🎤
        <br><small style="font-size: 13px; opacity: 0.75;"></small></h1>""",
    )
    
    selected_state = gr.State(value=None)
    custom_loaded_lora = gr.State(value=None)
    
    with gr.Row(elem_id="main_app"):
        with gr.Column(scale=4, elem_id="box_column"):
            with gr.Group(elem_id="gallery_box"):
                input_image = gr.Image(label="Upload a picture of yourself", type="pil", height=300)
                
                gallery = gr.Gallery(
                    label="Pick a LoRA",
                    allow_preview=False,
                    columns=3,
                    elem_id="gallery",
                    show_share_button=False,
                    height=400
                )
                
                custom_model = gr.Textbox(
                    label="Or enter a custom HuggingFace FLUX LoRA", 
                    placeholder="e.g., username/lora-name",
                    visible=False
                )
                custom_model_card = gr.HTML(visible=False)
                custom_model_button = gr.Button("Remove custom LoRA", visible=False)
        
        with gr.Column(scale=5):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Editing Prompt",
                    show_label=False,
                    lines=1,
                    max_lines=1,
                    placeholder="optional description, e.g. 'a man with glasses and a beard'",
                    elem_id="prompt"
                )
                run_button = gr.Button("Generate", elem_id="run_button")
            
            result = gr.Image(label="Generated Image", interactive=False)
            reuse_button = gr.Button("Reuse this image", visible=False)
            
            with gr.Accordion("Advanced Settings", open=False):
                lora_scale = gr.Slider(
                    label="LoRA Scale",
                    minimum=0,
                    maximum=2,
                    step=0.1,
                    value=1.5,
                    info="Controls the strength of the LoRA effect"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                guidance_scale = gr.Slider(
                    label="Guidance Scale",
                    minimum=1,
                    maximum=10,
                    step=0.1,
                    value=2.5,
                )
            
            prompt_title = gr.Markdown(
                value="### Click on a LoRA in the gallery to select it",
                visible=True,
                elem_id="selected_lora",
            )

    # Event handlers
    custom_model.input(
        fn=load_custom_lora,
        inputs=[custom_model],
        outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state],
    )
    
    custom_model_button.click(
        fn=remove_custom_lora,
        outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state]
    )
    
    gallery.select(
        fn=update_selection,
        inputs=[gr_flux_loras],
        outputs=[prompt_title, prompt, selected_state],
        show_progress=False
    )
    
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer_with_lora_wrapper,
        inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
        outputs=[result, seed, reuse_button]
    )
    
    reuse_button.click(
        fn=lambda image: image,
        inputs=[result],
        outputs=[input_image]
    )
    
    # Initialize gallery
    demo.load(
        fn=classify_gallery, 
        inputs=[gr_flux_loras], 
        outputs=[gallery, gr_flux_loras]
    )

demo.queue(default_concurrency_limit=None)
demo.launch()