File size: 3,478 Bytes
5b8270b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
319c105
5b8270b
 
 
319c105
5b8270b
 
 
319c105
5b8270b
 
a01f1f3
 
5b8270b
 
 
 
 
 
 
e982174
5b8270b
 
 
 
 
 
 
 
 
 
 
e982174
 
 
 
 
 
 
 
 
 
5b8270b
e982174
 
 
5b8270b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e982174
 
 
 
 
5b8270b
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import gradio as gr
import numpy as np

import spaces
import torch
import random
from PIL import Image

from kontext_pipeline import FluxKontextPipeline
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image

from huggingface_hub import hf_hub_download


kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors")

MAX_SEED = np.iinfo(np.int32).max

transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")

@spaces.GPU
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
        
    input_image = input_image.convert("RGB")
    original_width, original_height = input_image.size
    
    if original_width >= original_height:
        new_width = 1024
        new_height = int(original_height * (new_width / original_width))
        new_height = round(new_height / 64) * 64
    else:
        new_height = 1024
        new_width = int(original_width * (new_height / original_height))
        new_width = round(new_width / 64) * 64
    
    input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS)
    image = pipe(
        image=input_image_resized, 
        prompt=prompt,
        guidance_scale=guidance_scale,
        width=new_width,
        height=new_height,
        generator=torch.Generator().manual_seed(seed),
    ).images[0]
    return image, seed

css="""
#col-container {
    margin: 0 auto;
    max-width: 960px;
}
"""

with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown(f"""# FLUX.1 Kontext [dev]
        """)

        input_image = gr.Image(label="Upload the image for editing", type="pil")
        with gr.Row():
            with gr.Column():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
                    container=False,
                )
                
                run_button = gr.Button("Run", scale=0)
            
            with gr.Column():
                result = gr.Image(label="Result", show_label=False)
                reuse_button = gr.Button("Reuse this image", scale=0)
        
        with gr.Accordion("Advanced Settings", open=False):
            
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            
            guidance_scale = gr.Slider(
                label="Guidance Scale",
                minimum=1,
                maximum=10,
                step=0.1,
                value=2.5,
            )

    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn = infer,
        inputs = [input_image, prompt, seed, randomize_seed, guidance_scale],
        outputs = [result, seed]
    )
    reuse_button.click(
        fn = lambda image: image,
        inputs = [result],
        outputs = [input_image]
    )

demo.launch()