Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import numpy as np | |
import spaces | |
import torch | |
import random | |
import json | |
import os | |
from PIL import Image | |
from kontext_pipeline import FluxKontextPipeline | |
from diffusers import FluxTransformer2DModel | |
from diffusers.utils import load_image | |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard | |
from safetensors.torch import load_file | |
import requests | |
import re | |
# Load Kontext model | |
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors") | |
MAX_SEED = np.iinfo(np.int32).max | |
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16) | |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda") | |
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs) | |
try: | |
with open("flux_loras.json", "r") as file: | |
data = json.load(file) | |
flux_loras_raw = [ | |
{ | |
"image": item["image"], | |
"title": item["title"], | |
"repo": item["repo"], | |
"trigger_word": item.get("trigger_word", ""), | |
"weights": item.get("weights", "pytorch_lora_weights.safetensors"), | |
"likes": item.get("likes", 0), | |
"downloads": item.get("downloads", 0), | |
} | |
for item in data | |
] | |
except FileNotFoundError: | |
# Default LoRAs if JSON file doesn't exist | |
flux_loras_raw = [ | |
{ | |
"image": "https://via.placeholder.com/300x300?text=LoRA+1", | |
"title": "Example LoRA 1", | |
"repo": "example/lora1", | |
"trigger_word": "style1", | |
"weights": "pytorch_lora_weights.safetensors", | |
"likes": 100, | |
"downloads": 500, | |
}, | |
{ | |
"image": "https://via.placeholder.com/300x300?text=LoRA+2", | |
"title": "Example LoRA 2", | |
"repo": "example/lora2", | |
"trigger_word": "style2", | |
"weights": "pytorch_lora_weights.safetensors", | |
"likes": 80, | |
"downloads": 300, | |
} | |
] | |
# Global variables for LoRA management | |
current_lora = None | |
lora_cache = {} | |
def load_lora_weights(repo_id, weights_filename): | |
"""Load LoRA weights from HuggingFace""" | |
try: | |
if repo_id not in lora_cache: | |
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename) | |
lora_cache[repo_id] = lora_path | |
return lora_cache[repo_id] | |
except Exception as e: | |
print(f"Error loading LoRA from {repo_id}: {e}") | |
return None | |
def update_selection(selected_state: gr.SelectData, flux_loras): | |
"""Update UI when a LoRA is selected""" | |
if selected_state.index >= len(flux_loras): | |
return "### No LoRA selected", gr.update(), None | |
lora_repo = flux_loras[selected_state.index]["repo"] | |
trigger_word = flux_loras[selected_state.index]["trigger_word"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
new_placeholder = f"Enter your editing prompt{f' (use {trigger_word} for best results)' if trigger_word else ''}" | |
return updated_text, gr.update(placeholder=new_placeholder), selected_state.index | |
def get_huggingface_lora(link): | |
"""Download LoRA from HuggingFace link""" | |
split_link = link.split("/") | |
if len(split_link) == 2: | |
try: | |
model_card = ModelCard.load(link) | |
trigger_word = model_card.data.get("instance_prompt", "") | |
fs = HfFileSystem() | |
list_of_files = fs.ls(link, detail=False) | |
safetensors_file = None | |
for file in list_of_files: | |
if file.endswith(".safetensors") and "lora" in file.lower(): | |
safetensors_file = file.split("/")[-1] | |
break | |
if not safetensors_file: | |
safetensors_file = "pytorch_lora_weights.safetensors" | |
return split_link[1], safetensors_file, trigger_word | |
except Exception as e: | |
raise Exception(f"Error loading LoRA: {e}") | |
else: | |
raise Exception("Invalid HuggingFace repository format") | |
def load_custom_lora(link): | |
"""Load custom LoRA from user input""" | |
if not link: | |
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it", None | |
try: | |
repo_name, weights_file, trigger_word = get_huggingface_lora(link) | |
card = f''' | |
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;"> | |
<span><strong>Loaded custom LoRA:</strong></span> | |
<div style="margin-top: 8px;"> | |
<h4>{repo_name}</h4> | |
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small> | |
</div> | |
</div> | |
''' | |
custom_lora_data = { | |
"repo": link, | |
"weights": weights_file, | |
"trigger_word": trigger_word | |
} | |
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}", None | |
except Exception as e: | |
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it", None | |
def remove_custom_lora(): | |
"""Remove custom LoRA""" | |
return "", gr.update(visible=False), gr.update(visible=False), None, None | |
def classify_gallery(flux_loras): | |
"""Sort gallery by likes""" | |
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True) | |
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery | |
def infer_with_lora_wrapper(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
"""Wrapper function to handle state serialization""" | |
return infer_with_lora(input_image, prompt, selected_index, custom_lora, seed, randomize_seed, guidance_scale, lora_scale, flux_loras, progress) | |
def infer_with_lora(input_image, prompt, selected_index, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
"""Generate image with selected LoRA""" | |
global current_lora, pipe | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
# Determine which LoRA to use | |
lora_to_use = None | |
if custom_lora: | |
lora_to_use = custom_lora | |
elif selected_index is not None and flux_loras and selected_index < len(flux_loras): | |
lora_to_use = flux_loras[selected_index] | |
# Load LoRA if needed | |
if lora_to_use and lora_to_use != current_lora: | |
try: | |
# Unload current LoRA | |
if current_lora: | |
pipe.unload_lora_weights() | |
# Load new LoRA | |
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"]) | |
if lora_path: | |
pipe.load_lora_weights(lora_path, adapter_name="selected_lora") | |
current_lora = lora_to_use | |
# Add trigger word to prompt if available | |
trigger_word = lora_to_use.get("trigger_word", "") | |
if trigger_word and trigger_word not in prompt: | |
prompt = f"{trigger_word} {prompt}" | |
except Exception as e: | |
print(f"Error loading LoRA: {e}") | |
# Continue without LoRA | |
# Set LoRA scale if LoRA is loaded | |
if current_lora and hasattr(pipe, 'set_adapters'): | |
try: | |
pipe.set_adapters("selected_lora", adapter_weights=[lora_scale]) | |
except: | |
# Fallback for older diffusers versions | |
pass | |
input_image = input_image.convert("RGB") | |
try: | |
image = pipe( | |
image=input_image, | |
prompt=prompt, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator().manual_seed(seed), | |
).images[0] | |
return image, seed, gr.update(visible=True) | |
except Exception as e: | |
print(f"Error during inference: {e}") | |
return None, seed, gr.update(visible=False) | |
# CSS styling | |
css = """ | |
#main_app { | |
display: flex; | |
gap: 20px; | |
} | |
#box_column { | |
min-width: 400px; | |
} | |
#gallery_box { | |
border: 1px solid #ddd; | |
border-radius: 8px; | |
padding: 15px; | |
} | |
#gallery { | |
height: 400px; | |
} | |
#selected_lora { | |
color: #2563eb; | |
font-weight: bold; | |
} | |
#prompt { | |
flex-grow: 1; | |
} | |
#run_button { | |
background: linear-gradient(45deg, #2563eb, #3b82f6); | |
color: white; | |
border: none; | |
padding: 8px 16px; | |
border-radius: 6px; | |
font-weight: bold; | |
} | |
.custom_lora_card { | |
background: #f8fafc; | |
border: 1px solid #e2e8f0; | |
border-radius: 8px; | |
padding: 12px; | |
margin: 8px 0; | |
} | |
""" | |
# Create Gradio interface | |
with gr.Blocks(css=css) as demo: | |
gr_flux_loras = gr.State(value=flux_loras_raw) | |
title = gr.HTML( | |
"""<h1> FLUX.1 Kontext Portrait 👩🏻🎤 | |
<br><small style="font-size: 13px; opacity: 0.75;"></small></h1>""", | |
) | |
selected_state = gr.State(value=None) | |
custom_loaded_lora = gr.State(value=None) | |
with gr.Row(elem_id="main_app"): | |
with gr.Column(scale=4, elem_id="box_column"): | |
with gr.Group(elem_id="gallery_box"): | |
input_image = gr.Image(label="Upload image for editing", type="pil", height=250) | |
gallery = gr.Gallery( | |
label="Pick a LoRA style from the gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery", | |
show_share_button=False, | |
height=400 | |
) | |
custom_model = gr.Textbox( | |
label="Or enter a custom HuggingFace FLUX LoRA", | |
placeholder="e.g., username/lora-name", | |
visible=False | |
) | |
custom_model_card = gr.HTML(visible=False) | |
custom_model_button = gr.Button("Remove custom LoRA", visible=False) | |
with gr.Column(scale=5): | |
with gr.Row(): | |
prompt = gr.Textbox( | |
label="Editing Prompt", | |
show_label=False, | |
lines=1, | |
max_lines=1, | |
placeholder="Enter your editing prompt (e.g., 'Remove glasses', 'Add a hat')", | |
elem_id="prompt" | |
) | |
run_button = gr.Button("Generate", elem_id="run_button") | |
result = gr.Image(label="Generated Image", interactive=False) | |
reuse_button = gr.Button("Reuse this image", visible=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
lora_scale = gr.Slider( | |
label="LoRA Scale", | |
minimum=0, | |
maximum=2, | |
step=0.1, | |
value=1.0, | |
info="Controls the strength of the LoRA effect" | |
) | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=1, | |
maximum=10, | |
step=0.1, | |
value=2.5, | |
) | |
prompt_title = gr.Markdown( | |
value="### Click on a LoRA in the gallery to select it", | |
visible=True, | |
elem_id="selected_lora", | |
) | |
# Event handlers | |
custom_model.input( | |
fn=load_custom_lora, | |
inputs=[custom_model], | |
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title, selected_state], | |
) | |
custom_model_button.click( | |
fn=remove_custom_lora, | |
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora, selected_state] | |
) | |
gallery.select( | |
fn=update_selection, | |
inputs=[gr_flux_loras], | |
outputs=[prompt_title, prompt, selected_state], | |
show_progress=False | |
) | |
gr.on( | |
triggers=[run_button.click, prompt.submit], | |
fn=infer_with_lora_wrapper, | |
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras], | |
outputs=[result, seed, reuse_button] | |
) | |
reuse_button.click( | |
fn=lambda image: image, | |
inputs=[result], | |
outputs=[input_image] | |
) | |
# Initialize gallery | |
demo.load( | |
fn=classify_gallery, | |
inputs=[gr_flux_loras], | |
outputs=[gallery, gr_flux_loras] | |
) | |
demo.queue(default_concurrency_limit=None) | |
demo.launch() |