Spaces:
Running
on
Zero
Running
on
Zero
add lora gallery
Browse files
app.py
CHANGED
@@ -1,116 +1,379 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
-
|
4 |
import spaces
|
5 |
import torch
|
6 |
import random
|
|
|
|
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
#from kontext_pipeline import FluxKontextPipeline
|
10 |
-
from pipeline_flux_kontext import FluxKontextPipeline
|
11 |
from diffusers import FluxTransformer2DModel
|
12 |
from diffusers.utils import load_image
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
|
18 |
-
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
|
22 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
@spaces.GPU
|
25 |
-
def
|
|
|
|
|
26 |
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
input_image = input_image.convert("RGB")
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
prompt=prompt,
|
46 |
-
guidance_scale=guidance_scale,
|
47 |
-
# width=new_width,
|
48 |
-
# height=new_height,
|
49 |
-
generator=torch.Generator().manual_seed(seed),
|
50 |
-
).images[0]
|
51 |
-
return image, seed, gr.update(visible=True)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
"""
|
59 |
|
|
|
60 |
with gr.Blocks(css=css) as demo:
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
"""
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
label="Guidance Scale",
|
92 |
-
minimum=1,
|
93 |
-
maximum=10,
|
94 |
-
step=0.1,
|
95 |
-
value=2.5,
|
96 |
-
)
|
97 |
-
|
98 |
-
with gr.Column():
|
99 |
-
result = gr.Image(label="Result", show_label=False, interactive=False)
|
100 |
-
reuse_button = gr.Button("Reuse this image", visible=False)
|
101 |
-
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
gr.on(
|
105 |
triggers=[run_button.click, prompt.submit],
|
106 |
-
fn
|
107 |
-
inputs
|
108 |
-
outputs
|
109 |
)
|
|
|
110 |
reuse_button.click(
|
111 |
-
fn
|
112 |
-
inputs
|
113 |
-
outputs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
)
|
115 |
|
|
|
116 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
|
|
3 |
import spaces
|
4 |
import torch
|
5 |
import random
|
6 |
+
import json
|
7 |
+
import os
|
8 |
from PIL import Image
|
9 |
+
from kontext_pipeline import FluxKontextPipeline
|
|
|
|
|
10 |
from diffusers import FluxTransformer2DModel
|
11 |
from diffusers.utils import load_image
|
12 |
+
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard
|
13 |
+
from safetensors.torch import load_file
|
14 |
+
import requests
|
15 |
+
import re
|
16 |
|
17 |
+
# Load Kontext model
|
|
|
|
|
18 |
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
|
22 |
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
|
23 |
|
24 |
+
# Load LoRA data (you'll need to create this JSON file or modify to load your LoRAs)
|
25 |
+
try:
|
26 |
+
with open("flux_loras.json", "r") as file:
|
27 |
+
data = json.load(file)
|
28 |
+
flux_loras_raw = [
|
29 |
+
{
|
30 |
+
"image": item["image"],
|
31 |
+
"title": item["title"],
|
32 |
+
"repo": item["repo"],
|
33 |
+
"trigger_word": item.get("trigger_word", ""),
|
34 |
+
"weights": item.get("weights", "pytorch_lora_weights.safetensors"),
|
35 |
+
"likes": item.get("likes", 0),
|
36 |
+
"downloads": item.get("downloads", 0),
|
37 |
+
}
|
38 |
+
for item in data
|
39 |
+
]
|
40 |
+
except FileNotFoundError:
|
41 |
+
# Default LoRAs if JSON file doesn't exist
|
42 |
+
flux_loras_raw = [
|
43 |
+
{
|
44 |
+
"image": "https://via.placeholder.com/300x300?text=LoRA+1",
|
45 |
+
"title": "Example LoRA 1",
|
46 |
+
"repo": "example/lora1",
|
47 |
+
"trigger_word": "style1",
|
48 |
+
"weights": "pytorch_lora_weights.safetensors",
|
49 |
+
"likes": 100,
|
50 |
+
"downloads": 500,
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"image": "https://via.placeholder.com/300x300?text=LoRA+2",
|
54 |
+
"title": "Example LoRA 2",
|
55 |
+
"repo": "example/lora2",
|
56 |
+
"trigger_word": "style2",
|
57 |
+
"weights": "pytorch_lora_weights.safetensors",
|
58 |
+
"likes": 80,
|
59 |
+
"downloads": 300,
|
60 |
+
}
|
61 |
+
]
|
62 |
+
|
63 |
+
# Global variables for LoRA management
|
64 |
+
current_lora = None
|
65 |
+
lora_cache = {}
|
66 |
+
|
67 |
+
def load_lora_weights(repo_id, weights_filename):
|
68 |
+
"""Load LoRA weights from HuggingFace"""
|
69 |
+
try:
|
70 |
+
if repo_id not in lora_cache:
|
71 |
+
lora_path = hf_hub_download(repo_id=repo_id, filename=weights_filename)
|
72 |
+
lora_cache[repo_id] = lora_path
|
73 |
+
return lora_cache[repo_id]
|
74 |
+
except Exception as e:
|
75 |
+
print(f"Error loading LoRA from {repo_id}: {e}")
|
76 |
+
return None
|
77 |
+
|
78 |
+
def update_selection(selected_state: gr.SelectData, flux_loras):
|
79 |
+
"""Update UI when a LoRA is selected"""
|
80 |
+
if selected_state.index >= len(flux_loras):
|
81 |
+
return "### No LoRA selected", gr.update(), selected_state
|
82 |
+
|
83 |
+
lora_repo = flux_loras[selected_state.index]["repo"]
|
84 |
+
trigger_word = flux_loras[selected_state.index]["trigger_word"]
|
85 |
+
|
86 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
|
87 |
+
new_placeholder = f"Enter your editing prompt{f' (use {trigger_word} for best results)' if trigger_word else ''}"
|
88 |
+
|
89 |
+
return updated_text, gr.update(placeholder=new_placeholder), selected_state
|
90 |
+
|
91 |
+
def get_huggingface_lora(link):
|
92 |
+
"""Download LoRA from HuggingFace link"""
|
93 |
+
split_link = link.split("/")
|
94 |
+
if len(split_link) == 2:
|
95 |
+
try:
|
96 |
+
model_card = ModelCard.load(link)
|
97 |
+
trigger_word = model_card.data.get("instance_prompt", "")
|
98 |
+
|
99 |
+
fs = HfFileSystem()
|
100 |
+
list_of_files = fs.ls(link, detail=False)
|
101 |
+
safetensors_file = None
|
102 |
+
|
103 |
+
for file in list_of_files:
|
104 |
+
if file.endswith(".safetensors") and "lora" in file.lower():
|
105 |
+
safetensors_file = file.split("/")[-1]
|
106 |
+
break
|
107 |
+
|
108 |
+
if not safetensors_file:
|
109 |
+
safetensors_file = "pytorch_lora_weights.safetensors"
|
110 |
+
|
111 |
+
return split_link[1], safetensors_file, trigger_word
|
112 |
+
except Exception as e:
|
113 |
+
raise Exception(f"Error loading LoRA: {e}")
|
114 |
+
else:
|
115 |
+
raise Exception("Invalid HuggingFace repository format")
|
116 |
+
|
117 |
+
def load_custom_lora(link):
|
118 |
+
"""Load custom LoRA from user input"""
|
119 |
+
if not link:
|
120 |
+
return gr.update(visible=False), "", gr.update(visible=False), None, gr.Gallery(selected_index=None), "### Click on a LoRA in the gallery to select it"
|
121 |
+
|
122 |
+
try:
|
123 |
+
repo_name, weights_file, trigger_word = get_huggingface_lora(link)
|
124 |
+
|
125 |
+
card = f'''
|
126 |
+
<div style="border: 1px solid #ddd; padding: 10px; border-radius: 8px; margin: 10px 0;">
|
127 |
+
<span><strong>Loaded custom LoRA:</strong></span>
|
128 |
+
<div style="margin-top: 8px;">
|
129 |
+
<h4>{repo_name}</h4>
|
130 |
+
<small>{"Using: <code><b>"+trigger_word+"</b></code> as trigger word" if trigger_word else "No trigger word found"}</small>
|
131 |
+
</div>
|
132 |
+
</div>
|
133 |
+
'''
|
134 |
+
|
135 |
+
custom_lora_data = {
|
136 |
+
"repo": link,
|
137 |
+
"weights": weights_file,
|
138 |
+
"trigger_word": trigger_word
|
139 |
+
}
|
140 |
+
|
141 |
+
return gr.update(visible=True), card, gr.update(visible=True), custom_lora_data, gr.Gallery(selected_index=None), f"Custom: {repo_name}"
|
142 |
+
|
143 |
+
except Exception as e:
|
144 |
+
return gr.update(visible=True), f"Error: {str(e)}", gr.update(visible=False), None, gr.update(), "### Click on a LoRA in the gallery to select it"
|
145 |
+
|
146 |
+
def remove_custom_lora():
|
147 |
+
"""Remove custom LoRA"""
|
148 |
+
return "", gr.update(visible=False), gr.update(visible=False), None
|
149 |
+
|
150 |
+
def classify_gallery(flux_loras):
|
151 |
+
"""Sort gallery by likes"""
|
152 |
+
sorted_gallery = sorted(flux_loras, key=lambda x: x.get("likes", 0), reverse=True)
|
153 |
+
return [(item["image"], item["title"]) for item in sorted_gallery], sorted_gallery
|
154 |
+
|
155 |
@spaces.GPU
|
156 |
+
def infer_with_lora(input_image, prompt, selected_state, custom_lora, seed=42, randomize_seed=False, guidance_scale=2.5, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)):
|
157 |
+
"""Generate image with selected LoRA"""
|
158 |
+
global current_lora, pipe
|
159 |
|
160 |
if randomize_seed:
|
161 |
seed = random.randint(0, MAX_SEED)
|
162 |
+
|
163 |
+
# Determine which LoRA to use
|
164 |
+
lora_to_use = None
|
165 |
+
if custom_lora:
|
166 |
+
lora_to_use = custom_lora
|
167 |
+
elif selected_state and flux_loras:
|
168 |
+
selected_index = selected_state.index if hasattr(selected_state, 'index') else None
|
169 |
+
if selected_index is not None and selected_index < len(flux_loras):
|
170 |
+
lora_to_use = flux_loras[selected_index]
|
171 |
+
|
172 |
+
# Load LoRA if needed
|
173 |
+
if lora_to_use and lora_to_use != current_lora:
|
174 |
+
try:
|
175 |
+
# Unload current LoRA
|
176 |
+
if current_lora:
|
177 |
+
pipe.unload_lora_weights()
|
178 |
+
|
179 |
+
# Load new LoRA
|
180 |
+
lora_path = load_lora_weights(lora_to_use["repo"], lora_to_use["weights"])
|
181 |
+
if lora_path:
|
182 |
+
pipe.load_lora_weights(lora_path, adapter_name="selected_lora")
|
183 |
+
current_lora = lora_to_use
|
184 |
+
|
185 |
+
# Add trigger word to prompt if available
|
186 |
+
trigger_word = lora_to_use.get("trigger_word", "")
|
187 |
+
if trigger_word and trigger_word not in prompt:
|
188 |
+
prompt = f"{trigger_word} {prompt}"
|
189 |
+
|
190 |
+
except Exception as e:
|
191 |
+
print(f"Error loading LoRA: {e}")
|
192 |
+
# Continue without LoRA
|
193 |
+
|
194 |
+
# Set LoRA scale if LoRA is loaded
|
195 |
+
if current_lora and hasattr(pipe, 'set_adapters'):
|
196 |
+
try:
|
197 |
+
pipe.set_adapters("selected_lora", adapter_weights=[lora_scale])
|
198 |
+
except:
|
199 |
+
# Fallback for older diffusers versions
|
200 |
+
pass
|
201 |
+
|
202 |
input_image = input_image.convert("RGB")
|
203 |
+
|
204 |
+
try:
|
205 |
+
image = pipe(
|
206 |
+
image=input_image,
|
207 |
+
prompt=prompt,
|
208 |
+
guidance_scale=guidance_scale,
|
209 |
+
generator=torch.Generator().manual_seed(seed),
|
210 |
+
).images[0]
|
211 |
+
|
212 |
+
return image, seed, gr.update(visible=True)
|
213 |
+
|
214 |
+
except Exception as e:
|
215 |
+
print(f"Error during inference: {e}")
|
216 |
+
return None, seed, gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
218 |
+
# CSS styling
|
219 |
+
css = """
|
220 |
+
#main_app {
|
221 |
+
display: flex;
|
222 |
+
gap: 20px;
|
223 |
+
}
|
224 |
+
#box_column {
|
225 |
+
min-width: 400px;
|
226 |
+
}
|
227 |
+
#gallery_box {
|
228 |
+
border: 1px solid #ddd;
|
229 |
+
border-radius: 8px;
|
230 |
+
padding: 15px;
|
231 |
+
}
|
232 |
+
#gallery {
|
233 |
+
height: 400px;
|
234 |
+
}
|
235 |
+
#selected_lora {
|
236 |
+
color: #2563eb;
|
237 |
+
font-weight: bold;
|
238 |
+
}
|
239 |
+
#prompt {
|
240 |
+
flex-grow: 1;
|
241 |
+
}
|
242 |
+
#run_button {
|
243 |
+
background: linear-gradient(45deg, #2563eb, #3b82f6);
|
244 |
+
color: white;
|
245 |
+
border: none;
|
246 |
+
padding: 8px 16px;
|
247 |
+
border-radius: 6px;
|
248 |
+
font-weight: bold;
|
249 |
+
}
|
250 |
+
.custom_lora_card {
|
251 |
+
background: #f8fafc;
|
252 |
+
border: 1px solid #e2e8f0;
|
253 |
+
border-radius: 8px;
|
254 |
+
padding: 12px;
|
255 |
+
margin: 8px 0;
|
256 |
}
|
257 |
"""
|
258 |
|
259 |
+
# Create Gradio interface
|
260 |
with gr.Blocks(css=css) as demo:
|
261 |
+
gr_flux_loras = gr.State(value=flux_loras_raw)
|
262 |
|
263 |
+
title = gr.HTML(
|
264 |
+
"""<h1> FLUX.1 Kontext Portrait 👩🏻🎤
|
265 |
+
<br><small style="font-size: 13px; opacity: 0.75;"></small></h1>""",
|
266 |
+
)
|
267 |
+
|
268 |
+
selected_state = gr.State()
|
269 |
+
custom_loaded_lora = gr.State()
|
270 |
+
|
271 |
+
with gr.Row(elem_id="main_app"):
|
272 |
+
with gr.Column(scale=4, elem_id="box_column"):
|
273 |
+
with gr.Group(elem_id="gallery_box"):
|
274 |
+
input_image = gr.Image(label="Upload image for editing", type="pil", height=250)
|
275 |
+
|
276 |
+
gallery = gr.Gallery(
|
277 |
+
label="Pick a LoRA style from the gallery",
|
278 |
+
allow_preview=False,
|
279 |
+
columns=3,
|
280 |
+
elem_id="gallery",
|
281 |
+
show_share_button=False,
|
282 |
+
height=400
|
283 |
+
)
|
284 |
+
|
285 |
+
custom_model = gr.Textbox(
|
286 |
+
label="Or enter a custom HuggingFace FLUX LoRA",
|
287 |
+
placeholder="e.g., username/lora-name",
|
288 |
+
visible=False
|
289 |
+
)
|
290 |
+
custom_model_card = gr.HTML(visible=False)
|
291 |
+
custom_model_button = gr.Button("Remove custom LoRA", visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
with gr.Column(scale=5):
|
294 |
+
with gr.Row():
|
295 |
+
prompt = gr.Textbox(
|
296 |
+
label="Editing Prompt",
|
297 |
+
show_label=False,
|
298 |
+
lines=1,
|
299 |
+
max_lines=1,
|
300 |
+
placeholder="Enter your editing prompt (e.g., 'Remove glasses', 'Add a hat')",
|
301 |
+
elem_id="prompt"
|
302 |
+
)
|
303 |
+
run_button = gr.Button("Generate", elem_id="run_button")
|
304 |
+
|
305 |
+
result = gr.Image(label="Generated Image", interactive=False)
|
306 |
+
reuse_button = gr.Button("Reuse this image", visible=False)
|
307 |
+
|
308 |
+
with gr.Accordion("Advanced Settings", open=False):
|
309 |
+
lora_scale = gr.Slider(
|
310 |
+
label="LoRA Scale",
|
311 |
+
minimum=0,
|
312 |
+
maximum=2,
|
313 |
+
step=0.1,
|
314 |
+
value=1.0,
|
315 |
+
info="Controls the strength of the LoRA effect"
|
316 |
+
)
|
317 |
+
seed = gr.Slider(
|
318 |
+
label="Seed",
|
319 |
+
minimum=0,
|
320 |
+
maximum=MAX_SEED,
|
321 |
+
step=1,
|
322 |
+
value=0,
|
323 |
+
)
|
324 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
325 |
+
guidance_scale = gr.Slider(
|
326 |
+
label="Guidance Scale",
|
327 |
+
minimum=1,
|
328 |
+
maximum=10,
|
329 |
+
step=0.1,
|
330 |
+
value=2.5,
|
331 |
+
)
|
332 |
+
|
333 |
+
prompt_title = gr.Markdown(
|
334 |
+
value="### Click on a LoRA in the gallery to select it",
|
335 |
+
visible=True,
|
336 |
+
elem_id="selected_lora",
|
337 |
+
)
|
338 |
|
339 |
+
# Event handlers
|
340 |
+
custom_model.input(
|
341 |
+
fn=load_custom_lora,
|
342 |
+
inputs=[custom_model],
|
343 |
+
outputs=[custom_model_card, custom_model_card, custom_model_button, custom_loaded_lora, gallery, prompt_title],
|
344 |
+
)
|
345 |
+
|
346 |
+
custom_model_button.click(
|
347 |
+
fn=remove_custom_lora,
|
348 |
+
outputs=[custom_model, custom_model_button, custom_model_card, custom_loaded_lora]
|
349 |
+
)
|
350 |
+
|
351 |
+
gallery.select(
|
352 |
+
fn=update_selection,
|
353 |
+
inputs=[gr_flux_loras],
|
354 |
+
outputs=[prompt_title, prompt, selected_state],
|
355 |
+
show_progress=False
|
356 |
+
)
|
357 |
+
|
358 |
gr.on(
|
359 |
triggers=[run_button.click, prompt.submit],
|
360 |
+
fn=infer_with_lora,
|
361 |
+
inputs=[input_image, prompt, selected_state, custom_loaded_lora, seed, randomize_seed, guidance_scale, lora_scale, gr_flux_loras],
|
362 |
+
outputs=[result, seed, reuse_button]
|
363 |
)
|
364 |
+
|
365 |
reuse_button.click(
|
366 |
+
fn=lambda image: image,
|
367 |
+
inputs=[result],
|
368 |
+
outputs=[input_image]
|
369 |
+
)
|
370 |
+
|
371 |
+
# Initialize gallery
|
372 |
+
demo.load(
|
373 |
+
fn=classify_gallery,
|
374 |
+
inputs=[gr_flux_loras],
|
375 |
+
outputs=[gallery, gr_flux_loras]
|
376 |
)
|
377 |
|
378 |
+
demo.queue(default_concurrency_limit=None)
|
379 |
demo.launch()
|