import gradio as gr import numpy as np import spaces import torch import random from PIL import Image from kontext_pipeline import FluxKontextPipeline from diffusers import FluxTransformer2DModel from diffusers.utils import load_image from huggingface_hub import hf_hub_download kontext_path = hf_hub_download(repo_id="diffusers/kontext", filename="kontext.safetensors") MAX_SEED = np.iinfo(np.int32).max transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16) pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda") @spaces.GPU def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)): if randomize_seed: seed = random.randint(0, MAX_SEED) input_image = input_image.convert("RGB") original_width, original_height = input_image.size if original_width >= original_height: new_width = 1024 new_height = int(original_height * (new_width / original_width)) new_height = round(new_height / 64) * 64 else: new_height = 1024 new_width = int(original_width * (new_height / original_height)) new_width = round(new_width / 64) * 64 input_image_resized = input_image.resize((new_width, new_height), Image.LANCZOS) image = pipe( image=input_image_resized, prompt=prompt, guidance_scale=guidance_scale, width=new_width, height=new_height, generator=torch.Generator().manual_seed(seed), ).images[0] return image, seed css=""" #col-container { margin: 0 auto; max-width: 960px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown(f"""# FLUX.1 Kontext [dev] """) input_image = gr.Image(label="Upload the image for editing", type="pil") with gr.Row(): with gr.Column(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", container=False, ) run_button = gr.Button("Run", scale=0) with gr.Column(): result = gr.Image(label="Result", show_label=False) reuse_button = gr.Button("Reuse this image", scale=0) with gr.Accordion("Advanced Settings", open=False): seed = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed = gr.Checkbox(label="Randomize seed", value=True) guidance_scale = gr.Slider( label="Guidance Scale", minimum=1, maximum=10, step=0.1, value=2.5, ) gr.on( triggers=[run_button.click, prompt.submit], fn = infer, inputs = [input_image, prompt, seed, randomize_seed, guidance_scale], outputs = [result, seed] ) reuse_button.click( fn = lambda image: image, inputs = [result], outputs = [input_image] ) demo.launch()