Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,188 Bytes
5b8270b e7097b1 5b8270b 9e458cc 5b8270b f390678 5b8270b 360e2a9 f390678 5b8270b f390678 5b8270b 56732fb 5b8270b e982174 5b8270b f390678 5b8270b e982174 f390678 66818c2 f390678 66818c2 097eb9b 5b8270b 097eb9b e982174 66818c2 56732fb 5b8270b 097eb9b 1486e38 5b8270b 56732fb 5b8270b e982174 5b8270b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
#from kontext_pipeline import FluxKontextPipeline
from pipeline_flux_kontext import FluxKontextPipeline
from diffusers import FluxTransformer2DModel
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
kontext_path = hf_hub_download(repo_id="diffusers/kontext-v2", filename="dev-opt-2-a-3.safetensors")
MAX_SEED = np.iinfo(np.int32).max
transformer = FluxTransformer2DModel.from_single_file(kontext_path, torch_dtype=torch.bfloat16)
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", transformer=transformer, torch_dtype=torch.bfloat16).to("cuda")
@spaces.GPU
def infer(input_image, prompt, seed=42, randomize_seed=False, guidance_scale=2.5, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
input_image = input_image.convert("RGB")
prompt_with_template = f"hange the lighting conditions in this image and add {prompt}. Lighting determines how bright or dark different parts of the image appear, where shadows fall, and how colors look. When you relight an image, you're simulating what the photo would look like if it were taken under different lighting conditions."
image = pipe(
image=input_image,
prompt=prompt_with_template,
guidance_scale=guidance_scale,
width=input_image.size[0],
height=input_image.size[1],
generator=torch.Generator().manual_seed(seed),
).images[0]
return image, seed, gr.update(visible=True)
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# FLUX.1 Kontext [dev] Relight
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Upload the image for relighting", type="pil")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="scifi RGB flowing, studio lighting",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
with gr.Column():
result = gr.Image(label="Result", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
gr.Examples(
examples=[
["./assets/5_before.png", "sunset over sea lighting coming from the top right part of the photo", 0, True, 2.5],
["./assets/3_before.png", "sci-fi RGB glowing, studio lighting",0, True,2.5],
["./assets/2_before.png", "neon light, city",0, True, 2.5]
],
inputs=[input_image, prompt, seed, randomize_seed, guidance_scale],
outputs=[result, seed, reuse_button],
fn=infer,
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [input_image, prompt, seed, randomize_seed, guidance_scale],
outputs = [result, seed, reuse_button]
)
reuse_button.click(
fn = lambda image: image,
inputs = [result],
outputs = [input_image]
)
demo.launch() |