Spaces:
Runtime error
Runtime error
File size: 8,346 Bytes
4df8249 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import re
import copy
import json
import random
import string
import http.client
import chromadb
import torch
import torch.nn.functional as F
from urllib.request import urlopen
from urllib.error import HTTPError
from bs4 import BeautifulSoup
from transformers import AutoTokenizer, AutoModel
from pingpong import PingPong
from pingpong.pingpong import PPManager
from pingpong.context.strategy import CtxStrategy
default_instruction = """Below texts come from the webpages that you provided in '{ping}'. Try to explain '{ping}' in detail as much as possible. Your exaplanation should almost based on the text below. Try not to write anything unrelated information.
=====================
"""
class URLSearchStrategy(CtxStrategy):
def __init__(
self,
similarity_searcher,
instruction=default_instruction,
db_name=None, chunk_size=1000
):
self.searcher = similarity_searcher
self.instruction = instruction
self.db_name = db_name
self.chunk_size = chunk_size
if self.searcher is None:
raise ValueError("SimilaritySearcher is not set.")
if self.db_name is None:
self.db_name = URLSearchStrategy.id_generator()
def __call__(self, ppmanager: PPManager, urls, top_k=8, max_tokens=1024, keep_original=False):
ppm = copy.deepcopy(ppmanager)
last_ping = ppm.pingpongs[-1].ping
# 1st yield
ppm.add_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection...")
yield True, ppm, "β’ Creating Chroma DB Collection β"
chroma_client = chromadb.Client()
try:
chroma_client.delete_collection(self.db_name)
except:
pass
col = chroma_client.create_collection(self.db_name)
# 2nd yield
ppm.replace_last_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection β\n")
ppm.append_pong("β’ URL Searching...\n")
yield True, ppm, "β’ URL Searching β"
# HTML parsing
search_results = []
success_urls = []
for url in urls:
parse_result, contents = self._parse_html(url)
if parse_result == True:
success_urls.append(url)
search_results.append(contents)
ppm.append_pong(f" - {url} β\n")
yield True, ppm, f" β· {url} β"
if len(search_results) == 0:
yield False, ppm, "There is no valid URLs. Check if there are trailing characters such as .(dot), ,(comma), etc., LLM will answer to your question based on its base knowledge."
if len(' '.join(search_results).split(' ')) < max_tokens:
final_result = ' '.join(search_results)
# 3rd yield
ppm.replace_last_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection β\n")
ppm.append_pong("β’ URL Searching β\n")
for url in success_urls:
ppm.append_pong(f" - {url} β\n")
yield True, ppm, "β’ Done β"
last_ping = self.instruction.format(ping=last_ping)
last_ping = last_ping + final_result
ppm.pingpongs[-1].ping = last_ping
ppm.replace_last_pong("")
yield True, ppm, "β³ Wait until LLM generates message for you β³"
else:
# 3rd yield
ppm.replace_last_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection β\n")
ppm.append_pong("β’ URL Searching β\n")
for url in success_urls:
ppm.append_pong(f" - {url} β\n")
ppm.append_pong("β’ Creating embeddings...")
yield True, ppm, "β’ Creating embeddings β"
final_chunks = []
for search_result in search_results:
chunks = self._create_chunks(
search_result,
chunk_size=self.searcher.max_length
)
final_chunks.append(chunks)
self._put_chunks_into_collection(
col, final_chunks, docs_per_step=1
)
query_results = self._query(
col, f"query: {last_ping}", top_k,
)
# 4th yield
ppm.replace_last_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection β\n")
ppm.append_pong("β’ URL Searching β\n")
for url in success_urls:
ppm.append_pong(f" - {url} β\n")
ppm.append_pong("β’ Creating embeddings β\n")
ppm.append_pong("β’ Information retrieval...")
yield True, ppm, "β’ Information retrieval β"
last_ping = self.instruction.format(ping=last_ping)
for doc in query_results['documents'][0]:
last_ping = last_ping + doc.replace('passage: ', '') + "\n"
# 5th yield
ppm.replace_last_pong("\n")
ppm.append_pong("β’ Creating Chroma DB Collection β\n")
ppm.append_pong("β’ URL Searching β\n")
for url in success_urls:
ppm.append_pong(f" - {url} β\n")
ppm.append_pong("β’ Creating embeddings β\n")
ppm.append_pong("β’ Information retrieval β")
yield True, ppm, "β’ Done β"
ppm.pingpongs[-1].ping = last_ping
ppm.replace_last_pong("")
yield True, ppm, "β³ Wait until LLM generates message for you β³"
def _parse_html(self, url):
try:
page = urlopen(url, timeout=5)
html_bytes = page.read()
html = html_bytes.decode("utf-8")
except:
return False, None
text = ""
soup = BeautifulSoup(html, "html.parser")
for tag in soup.findAll('p'):
for string in tag.strings:
text = text + string
for tag in soup.findAll('pre'):
for string in tag.strings:
text = text + string
text = self._replace_multiple_newlines(text)
return True, text
def _query(
self, collection, q, top_k
):
_, q_embeddings_list = self.searcher.get_embeddings([q])
return collection.query(
query_embeddings=q_embeddings_list,
n_results=top_k
)
# chunk_size == number of characters
def _create_chunks(self, text, chunk_size):
chunks = []
for idx in range(0, len(text), chunk_size):
chunks.append(
f"passage: {text[idx:idx+chunk_size]}"
)
return chunks
def _put_chunk_into_collection(
self, collection, chunk_id, chunk, docs_per_step=1
):
for i in range(0, len(chunk), docs_per_step):
cur_texts = chunk[i:i+docs_per_step]
_, embeddings_list = self.searcher.get_embeddings(cur_texts)
ids = [
f"id-{chunk_id}-{num}" for num in range(i, i+docs_per_step)
]
collection.add(
embeddings=embeddings_list,
documents=cur_texts,
ids=ids
)
def _put_chunks_into_collection(
self, collection,
chunks, docs_per_step=1
):
for idx, chunk in enumerate(chunks):
self._put_chunk_into_collection(
collection, idx,
chunk, docs_per_step=docs_per_step
)
def _replace_multiple_newlines(self, text):
"""Replaces multiple newline characters with a single newline character."""
pattern = re.compile(r"\n+")
return pattern.sub("\n", text)
@classmethod
def id_generator(cls, size=10, chars=string.ascii_uppercase + string.digits):
return ''.join(random.choice(chars) for _ in range(size)) |