File size: 15,656 Bytes
d736789 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 |
/*!
* Figue v1.0.1
*
* Copyright 2010, Jean-Yves Delort
* Licensed under the MIT license.
*
*/
var figue = function () {
function euclidianDistance (vec1 , vec2) {
var N = vec1.length ;
var d = 0 ;
for (var i = 0 ; i < N ; i++)
d += Math.pow (vec1[i] - vec2[i], 2)
d = Math.sqrt (d) ;
return d ;
}
function manhattanDistance (vec1 , vec2) {
var N = vec1.length ;
var d = 0 ;
for (var i = 0 ; i < N ; i++)
d += Math.abs (vec1[i] - vec2[i])
return d ;
}
function maxDistance (vec1 , vec2) {
var N = vec1.length ;
var d = 0 ;
for (var i = 0 ; i < N ; i++)
d = Math.max (d , Math.abs (vec1[i] - vec2[i])) ;
return d ;
}
function addVectors (vec1 , vec2) {
var N = vec1.length ;
var vec = new Array(N) ;
for (var i = 0 ; i < N ; i++)
vec[i] = vec1[i] + vec2[i] ;
return vec ;
}
function multiplyVectorByValue (value , vec) {
var N = vec.length ;
var v = new Array(N) ;
for (var i = 0 ; i < N ; i++)
v[i] = value * vec[i] ;
return v ;
}
function vectorDotProduct (vec1, vec2) {
var N = vec1.length ;
var s = 0 ;
for (var i = 0 ; i < N ; i++)
s += vec1[i] * vec2[i] ;
return s ;
}
function repeatChar(c, n) {
var str = "";
for (var i = 0 ; i < n ; i++)
str += c ;
return str ;
}
function calculateCentroid (c1Size , c1Centroid , c2Size , c2Centroid) {
var newCentroid = new Array(c1Centroid.length) ;
var newSize = c1Size + c2Size ;
for (var i = 0 ; i < c1Centroid.length ; i++)
newCentroid[i] = (c1Size * c1Centroid[i] + c2Size * c2Centroid[i]) / newSize ;
return newCentroid ;
}
function centerString(str, width) {
var diff = width - str.length ;
if (diff < 0)
return ;
var halfdiff = Math.floor(diff / 2) ;
return repeatChar (" " , halfdiff) + str + repeatChar (" " , diff - halfdiff) ;
}
function putString(str, width, index) {
var diff = width - str.length ;
if (diff < 0)
return ;
return repeatChar (" " , index) + str + repeatChar (" " , width - (str.length+index)) ;
}
function prettyVector(vector) {
var vals = new Array(vector.length) ;
var precision = Math.pow(10, figue.PRINT_VECTOR_VALUE_PRECISION) ;
for (var i = 0 ; i < vector.length ; i++)
vals[i] = Math.round(vector[i]*precision)/precision ;
return vals.join(",")
}
function prettyValue(value) {
var precision = Math.pow(10, figue.PRINT_VECTOR_VALUE_PRECISION) ;
return String (Math.round(value*precision)/precision) ;
}
function generateDendogram(tree, sep, balanced, withLabel, withCentroid, withDistance) {
var lines = new Array ;
var centroidstr = prettyVector(tree.centroid) ;
if (tree.isLeaf()) {
var labelstr = String(tree.label) ;
var len = 1;
if (withCentroid)
len = Math.max(centroidstr.length , len) ;
if (withLabel)
len = Math.max(labelstr.length , len) ;
lines.push (centerString ("|" , len)) ;
if (withCentroid)
lines.push (centerString (centroidstr , len)) ;
if (withLabel)
lines.push (centerString (labelstr , len)) ;
} else {
var distancestr = prettyValue(tree.dist) ;
var left_dendo = generateDendogram(tree.left ,sep, balanced,withLabel,withCentroid, withDistance) ;
var right_dendo = generateDendogram(tree.right, sep, balanced,withLabel,withCentroid,withDistance) ;
var left_bar_ix = left_dendo[0].indexOf("|") ;
var right_bar_ix = right_dendo[0].indexOf("|") ;
// calculate nb of chars of each line
var len = sep + right_dendo[0].length + left_dendo[0].length ;
if (withCentroid)
len = Math.max(centroidstr.length , len) ;
if (withDistance)
len = Math.max(distancestr.length , len) ;
// calculate position of new vertical bar
var bar_ix = left_bar_ix + Math.floor(( left_dendo[0].length - (left_bar_ix) + sep + (1+right_bar_ix)) / 2) ;
// add line with the new vertical bar
lines.push (putString ("|" , len , bar_ix)) ;
if (withCentroid) {
lines.push (putString (centroidstr , len , bar_ix - Math.floor (centroidstr.length / 2))) ; //centerString (centroidstr , len)) ;
}
if (withDistance) {
lines.push (putString (distancestr , len , bar_ix - Math.floor (distancestr.length / 2))) ; //centerString (centroidstr , len)) ;
}
// add horizontal line to connect the vertical bars of the lower level
var hlineLen = sep + (left_dendo[0].length -left_bar_ix) + right_bar_ix+1 ;
var hline = repeatChar ("_" , hlineLen) ;
lines.push (putString(hline, len, left_bar_ix)) ;
// IF: the user want the tree to be balanced: all the leaves have to be at the same level
// THEN: if the left and right subtrees have not the same depth, add extra vertical bars to the top of the smallest subtree
if (balanced && (left_dendo.length != right_dendo.length)) {
var shortest ;
var longest ;
if (left_dendo.length > right_dendo.length) {
longest = left_dendo ;
shortest = right_dendo ;
} else {
longest = right_dendo ;
shortest = left_dendo ;
}
// repeat the first line containing the vertical bar
header = shortest[0] ;
var toadd = longest.length - shortest.length ;
for (var i = 0 ; i < toadd ; i++) {
shortest.splice (0,0,header) ;
}
}
// merge the left and right subtrees
for (var i = 0 ; i < Math.max (left_dendo.length , right_dendo.length) ; i++) {
var left = "" ;
if (i < left_dendo.length)
left = left_dendo[i] ;
else
left = repeatChar (" " , left_dendo[0].length) ;
var right = "" ;
if (i < right_dendo.length)
right = right_dendo[i] ;
else
right = repeatChar (" " , right_dendo[0].length) ;
lines.push(left + repeatChar (" " , sep) + right) ;
var l = left + repeatChar (" " , sep) + right ;
}
}
return lines ;
}
function agglomerate (labels, vectors, distance, linkage) {
var N = vectors.length ;
var dMin = new Array(N) ;
var cSize = new Array(N) ;
var matrixObj = new figue.Matrix(N,N);
var distMatrix = matrixObj.mtx ;
var clusters = new Array(N) ;
var c1, c2, c1Cluster, c2Cluster, i, j, p, root , newCentroid ;
if (distance == figue.EUCLIDIAN_DISTANCE)
distance = euclidianDistance ;
else if (distance == figue.MANHATTAN_DISTANCE)
distance = manhattanDistance ;
else if (distance == figue.MAX_DISTANCE)
distance = maxDistance ;
// Initialize distance matrix and vector of closest clusters
for (i = 0 ; i < N ; i++) {
dMin[i] = 0 ;
for (j = 0 ; j < N ; j++) {
if (i == j)
distMatrix[i][j] = Infinity ;
else
distMatrix[i][j] = distance(vectors[i] , vectors[j]) ;
if (distMatrix[i][dMin[i]] > distMatrix[i][j] )
dMin[i] = j ;
}
}
// create leaves of the tree
for (i = 0 ; i < N ; i++) {
clusters[i] = [] ;
clusters[i][0] = new Node (labels[i], null, null, 0, vectors[i]) ;
cSize[i] = 1 ;
}
// Main loop
for (p = 0 ; p < N-1 ; p++) {
// find the closest pair of clusters
c1 = 0 ;
for (i = 0 ; i < N ; i++) {
if (distMatrix[i][dMin[i]] < distMatrix[c1][dMin[c1]])
c1 = i ;
}
c2 = dMin[c1] ;
// create node to store cluster info
c1Cluster = clusters[c1][0] ;
c2Cluster = clusters[c2][0] ;
newCentroid = calculateCentroid ( c1Cluster.size , c1Cluster.centroid , c2Cluster.size , c2Cluster.centroid ) ;
newCluster = new Node (-1, c1Cluster, c2Cluster , distMatrix[c1][c2] , newCentroid) ;
clusters[c1].splice(0,0, newCluster) ;
cSize[c1] += cSize[c2] ;
// overwrite row c1 with respect to the linkage type
for (j = 0 ; j < N ; j++) {
if (linkage == figue.SINGLE_LINKAGE) {
if (distMatrix[c1][j] > distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j] ;
} else if (linkage == figue.COMPLETE_LINKAGE) {
if (distMatrix[c1][j] < distMatrix[c2][j])
distMatrix[j][c1] = distMatrix[c1][j] = distMatrix[c2][j] ;
} else if (linkage == figue.AVERAGE_LINKAGE) {
var avg = ( cSize[c1] * distMatrix[c1][j] + cSize[c2] * distMatrix[c2][j]) / (cSize[c1] + cSize[j])
distMatrix[j][c1] = distMatrix[c1][j] = avg ;
}
}
distMatrix[c1][c1] = Infinity ;
// infinity out old row c2 and column c2
for (i = 0 ; i < N ; i++)
distMatrix[i][c2] = distMatrix[c2][i] = Infinity ;
// update dmin and replace ones that previous pointed to c2 to point to c1
for (j = 0; j < N ; j++) {
if (dMin[j] == c2)
dMin[j] = c1;
if (distMatrix[c1][j] < distMatrix[c1][dMin[c1]])
dMin[c1] = j;
}
// keep track of the last added cluster
root = newCluster ;
}
return root ;
}
function getRandomVectors(k, vectors) {
/* Returns a array of k distinct vectors randomly selected from a the input array of vectors
Returns null if k > n or if there are less than k distinct objects in vectors */
var n = vectors.length ;
if ( k > n )
return null ;
var selected_vectors = new Array(k) ;
var selected_indices = new Array(k) ;
var tested_indices = new Object ;
var tested = 0 ;
var selected = 0 ;
var i , vector, select ;
while (selected < k) {
if (tested == n)
return null ;
var random_index = Math.floor(Math.random()*(n)) ;
if (random_index in tested_indices)
continue ;
tested_indices[random_index] = 1;
tested++ ;
vector = vectors[random_index] ;
select = true ;
for (i = 0 ; i < selected ; i++) {
if ( vector.compare (selected_vectors[i]) ) {
select = false ;
break ;
}
}
if (select) {
selected_vectors[selected] = vector ;
selected_indices[selected] = random_index ;
selected++ ;
}
}
return {'vectors': selected_vectors, 'indices': selected_indices} ;
}
function kmeans (k, vectors) {
var n = vectors.length ;
var assignments = new Array(n) ;
var clusterSizes = new Array(k) ;
var repeat = true ;
var nb_iters = 0 ;
var centroids = null ;
var t = getRandomVectors(k, vectors) ;
if (t == null)
return null ;
else
centroids = t.vectors ;
while (repeat) {
// assignment step
for (var j = 0 ; j < k ; j++)
clusterSizes[j] = 0 ;
for (var i = 0 ; i < n ; i++) {
var vector = vectors[i] ;
var mindist = Number.MAX_VALUE ;
var best ;
for (var j = 0 ; j < k ; j++) {
dist = euclidianDistance (centroids[j], vector)
if (dist < mindist) {
mindist = dist ;
best = j ;
}
}
clusterSizes[best]++ ;
assignments[i] = best ;
}
// update centroids step
var newCentroids = new Array(k) ;
for (var j = 0 ; j < k ; j++)
newCentroids[j] = null ;
for (var i = 0 ; i < n ; i++) {
cluster = assignments[i] ;
if (newCentroids[cluster] == null)
newCentroids[cluster] = vectors[i] ;
else
newCentroids[cluster] = addVectors (newCentroids[cluster] , vectors[i]) ;
}
for (var j = 0 ; j < k ; j++) {
newCentroids[j] = multiplyVectorByValue (1/clusterSizes[j] , newCentroids[j]) ;
}
// check convergence
repeat = false ;
for (var j = 0 ; j < k ; j++) {
if (! newCentroids[j].compare (centroids[j])) {
repeat = true ;
break ;
}
}
centroids = newCentroids ;
nb_iters++ ;
// check nb of iters
if (nb_iters > figue.KMEANS_MAX_ITERATIONS)
repeat = false ;
}
return { 'centroids': centroids , 'assignments': assignments} ;
}
function fcmeans (k, vectors, epsilon, fuzziness) {
var membershipMatrix = new Matrix (vectors.length, k) ;
var repeat = true ;
var nb_iters = 0 ;
var centroids = null ;
var i,j,l, tmp, norm, max, diff ;
while (repeat) {
// initialize or update centroids
if (centroids == null) {
tmp = getRandomVectors(k, vectors) ;
if (tmp == null)
return null ;
else
centroids = tmp.vectors ;
} else {
for (j = 0 ; j < k; j++) {
centroids[j] = [] ;
norm = 0 ;
for (i = 0 ; i < membershipMatrix.rows ; i++) {
norm += Math.pow(membershipMatrix.mtx[i][j], fuzziness) ;
tmp = multiplyVectorByValue( Math.pow(membershipMatrix.mtx[i][j], fuzziness) , vectors[i]) ;
if (i == 0)
centroids[j] = tmp ;
else
centroids[j] = addVectors (centroids[j] , tmp) ;
}
if (norm > 0)
centroids[j] = multiplyVectorByValue(1/norm, centroids[j]);
}
}
// update the degree of membership of each vector
previousMembershipMatrix = membershipMatrix.copy() ;
for (i = 0 ; i < membershipMatrix.rows ; i++) {
for (j = 0 ; j < k ; j++) {
membershipMatrix.mtx[i][j] = 0;
for (l = 0 ; l < k ; l++) {
if (euclidianDistance(vectors[i] , centroids[l]) == 0)
tmp = 0 ;
else
tmp = euclidianDistance(vectors[i] , centroids[j]) / euclidianDistance(vectors[i] , centroids[l]) ;
tmp = Math.pow (tmp, 2/(fuzziness-1)) ;
membershipMatrix.mtx[i][j] += tmp ;
}
if (membershipMatrix.mtx[i][j] > 0)
membershipMatrix.mtx[i][j] = 1 / membershipMatrix.mtx[i][j] ;
}
}
// check convergence
max = -1 ;
diff;
for (i = 0 ; i < membershipMatrix.rows ; i++)
for (j = 0 ; j < membershipMatrix.cols ; j++) {
diff = Math.abs(membershipMatrix.mtx[i][j] - previousMembershipMatrix.mtx[i][j]) ;
if (diff > max)
max = diff ;
}
if (max < epsilon)
repeat = false ;
nb_iters++ ;
// check nb of iters
if (nb_iters > figue.FCMEANS_MAX_ITERATIONS)
repeat = false ;
}
return { 'centroids': centroids , 'membershipMatrix': membershipMatrix} ;
}
function Matrix (rows,cols)
{
this.rows = rows ;
this.cols = cols ;
this.mtx = new Array(rows) ;
for (var i = 0 ; i < rows ; i++)
{
var row = new Array(cols) ;
for (var j = 0 ; j < cols ; j++)
row[j] = 0;
this.mtx[i] = row ;
}
}
function Node (label,left,right,dist, centroid)
{
this.label = label ;
this.left = left ;
this.right = right ;
this.dist = dist ;
this.centroid = centroid ;
if (left == null && right == null) {
this.size = 1 ;
this.depth = 0 ;
} else {
this.size = left.size + right.size ;
this.depth = 1 + Math.max (left.depth , right.depth ) ;
}
}
return {
SINGLE_LINKAGE: 0,
COMPLETE_LINKAGE: 1,
AVERAGE_LINKAGE:2 ,
EUCLIDIAN_DISTANCE: 0,
MANHATTAN_DISTANCE: 1,
MAX_DISTANCE: 2,
PRINT_VECTOR_VALUE_PRECISION: 2,
KMEANS_MAX_ITERATIONS: 10,
FCMEANS_MAX_ITERATIONS: 3,
Matrix: Matrix,
Node: Node,
generateDendogram: generateDendogram,
agglomerate: agglomerate,
kmeans: kmeans,
fcmeans: fcmeans
}
}() ;
figue.Matrix.prototype.toString = function()
{
var lines = [] ;
for (var i = 0 ; i < this.rows ; i++)
lines.push (this.mtx[i].join("\t")) ;
return lines.join ("\n") ;
}
figue.Matrix.prototype.copy = function()
{
var duplicate = new figue.Matrix(this.rows, this.cols) ;
for (var i = 0 ; i < this.rows ; i++)
duplicate.mtx[i] = this.mtx[i].slice(0);
return duplicate ;
}
figue.Node.prototype.isLeaf = function()
{
if ((this.left == null) && (this.right == null))
return true ;
else
return false ;
}
figue.Node.prototype.buildDendogram = function (sep, balanced,withLabel,withCentroid, withDistance)
{
lines = figue.generateDendogram(this, sep, balanced,withLabel,withCentroid, withDistance) ;
return lines.join ("\n") ;
}
Array.prototype.compare = function(testArr) {
if (this.length != testArr.length) return false;
for (var i = 0; i < testArr.length; i++) {
if (this[i].compare) {
if (!this[i].compare(testArr[i])) return false;
}
if (this[i] !== testArr[i]) return false;
}
return true;
}
|