Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
import gradio as gr | |
import kornia as K | |
from kornia.core import Tensor | |
from PIL import Image | |
import numpy as np | |
def load_img(file): | |
# load the image using PIL and convert to tensor | |
img_pil = Image.open(file).convert('RGB') | |
img_np = np.array(img_pil) | |
img_rgb: Tensor = K.utils.image_to_tensor(img_np).float() / 255.0 | |
img_rgb = img_rgb.unsqueeze(0) # add batch dimension | |
img_gray = K.color.rgb_to_grayscale(img_rgb) | |
return img_gray | |
def canny_edge_detector(file): | |
x_gray = load_img(file) | |
x_canny: Tensor = K.filters.canny(x_gray)[0] | |
img_out = 1.0 - x_canny.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
def sobel_edge_detector(file): | |
x_gray = load_img(file) | |
x_sobel: Tensor = K.filters.sobel(x_gray) | |
img_out = 1.0 - x_sobel | |
return K.utils.tensor_to_image(img_out) | |
def simple_edge_detector(file, order, direction): | |
x_gray = load_img(file) | |
grads: Tensor = K.filters.spatial_gradient(x_gray, order=order) # BxCx2xHxW | |
grads_x = grads[:, :, 0] | |
grads_y = grads[:, :, 1] | |
if direction == "x": | |
img_out = 1.0 - grads_x.clamp(0.0, 1.0) | |
else: | |
img_out = 1.0 - grads_y.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
def laplacian_edge_detector(file, kernel=9): | |
x_gray = load_img(file) | |
x_laplacian: Tensor = K.filters.laplacian(x_gray, kernel_size=kernel) | |
img_out = 1.0 - x_laplacian.clamp(0.0, 1.0) | |
return K.utils.tensor_to_image(img_out) | |
examples = [["examples/doraemon.png"], ["examples/kornia.png"]] | |
title = "Kornia Edge Detector" | |
description = "<p style='text-align: center'>This is a Gradio demo for Kornia's Edge Detector.</p><p style='text-align: center'>To use it, simply upload your image, or click one of the examples to load them, and use the sliders to enhance! Read more at the links at the bottom.</p>" | |
article = "<p style='text-align: center'><a href='https://kornia.readthedocs.io/en/latest/' target='_blank'>Kornia Docs</a> | <a href='https://github.com/kornia/kornia' target='_blank'>Kornia Github Repo</a> | <a https://kornia.github.io/tutorials/#category=Edge%20Detection' target='_blank'>Kornia Enhancements Tutorial</a></p>" | |
def change_layout(choice): | |
kernel = gr.update(visible=False) | |
order = gr.update(visible=False) | |
direction = gr.update(visible=False) | |
if choice == "Laplacian": | |
return [gr.update(value=3, visible=True), order, direction] | |
elif choice == "Simple": | |
return [kernel, gr.update(value=2, visible=True), gr.update(value="x", visible=True)] | |
return [kernel, order, direction] | |
def Detect(file, choice): | |
layout = change_layout(choice) | |
if choice == "Canny": | |
img = canny_edge_detector(file) | |
elif choice == "Sobel": | |
img = sobel_edge_detector(file) | |
elif choice == "Laplacian": | |
img = laplacian_edge_detector(file, 5) | |
else: | |
img = simple_edge_detector(file, 1, "x") | |
layout.extend([img]) | |
return layout | |
def Detect_wo_layout(file, choice, kernel, order, direction): | |
if choice == "Canny": | |
img = canny_edge_detector(file) | |
elif choice == "Sobel": | |
img = sobel_edge_detector(file) | |
elif choice == "Laplacian": | |
img = laplacian_edge_detector(file, kernel) | |
else: | |
img = simple_edge_detector(file, order, direction) | |
return img | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="filepath", label="Input Image") | |
kernel = gr.Slider(minimum=1, maximum=7, step=2, value=3, label="kernel_size", visible=False) | |
order = gr.Radio([1, 2], value=1, label="Derivative Order", visible=False) | |
direction = gr.Radio(["x", "y"], value="x", label="Derivative Direction", visible=False) | |
radio = gr.Radio(["Canny", "Simple", "Sobel", "Laplacian"], value="Canny", label="Type of Edge Detector") | |
with gr.Column(): | |
image_output = gr.Image(label="Output Image") | |
gr.Examples(examples, inputs=[image_input]) | |
radio.change(fn=Detect, inputs=[image_input, radio], outputs=[kernel, order, direction, image_output]) | |
kernel.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output]) | |
order.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output]) | |
direction.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output]) | |
image_input.change(fn=Detect_wo_layout, inputs=[image_input, radio, kernel, order, direction], outputs=[image_output]) | |
demo.launch() |