import gradio as gr import kornia as K from kornia.core import Tensor import numpy as np def rescale_aa(file, height, width): img: Tensor = K.io.load_image(file.name, K.io.ImageLoadType.RGB32) img = img[None] img_rescale: Tensor = K.geometry.rescale(img, (float(height),float(width)),antialias=False) img_rescale_aa: Tensor = K.geometry.rescale(img, (float(height),float(width)),antialias=True) img_rescale = K.utils.tensor_to_image(img_rescale) img_rescale_aa = K.utils.tensor_to_image(img_rescale_aa) img_out = np.concatenate([img_rescale,img_rescale_aa],axis=1) # when antialiasing , some values are going greater than 1 i.e 1.00001 which is giving error while displaying the output image,so clipping the output values from 0 to 1 return np.clip(img_out ,0,1) examples = [ ["examples/a.png",1,1], ["examples/iron_man.jpeg",1,1], ] kornia_resizing_demo = gr.Interface( rescale_aa, [ gr.inputs.Image(type="file"), gr.inputs.Slider(minimum=0.005, maximum=2, step=0.005, default=1, label="Height"), gr.inputs.Slider(minimum=0.005, maximum=2, step=0.005, default=1, label="Width") ], "image", examples=examples, live=False, enable_queue = True, allow_flagging = "never" ) kornia_resizing_demo.launch()