Spaces:
Running
Running
marianna13
commited on
Commit
•
772d191
1
Parent(s):
037c4aa
Add app.py
Browse files
app.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import kornia as K
|
4 |
+
import cv2
|
5 |
+
import numpy as np
|
6 |
+
from torchvision import transforms
|
7 |
+
from torchvision.utils import make_grid
|
8 |
+
|
9 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
10 |
+
|
11 |
+
def resize_images(f_names):
|
12 |
+
for i, f_name in enumerate(f_names):
|
13 |
+
img = cv2.imread(f_name, cv2.IMREAD_COLOR)
|
14 |
+
resized_image = cv2.resize(img,(70, 70))
|
15 |
+
cv2.imwrite(f_name,resized_image)
|
16 |
+
|
17 |
+
def predict(images, eps):
|
18 |
+
eps = float(eps)
|
19 |
+
f_names = [img.name for img in images]
|
20 |
+
resize_images(f_names)
|
21 |
+
convert_tensor = transforms.ToTensor()
|
22 |
+
images = [convert_tensor(cv2.imread(f, cv2.IMREAD_COLOR)) for f in f_names]
|
23 |
+
images = torch.stack(images, dim = 0).to(device)
|
24 |
+
zca = K.enhance.ZCAWhitening(eps=eps, compute_inv=True)
|
25 |
+
zca.fit(images)
|
26 |
+
zca_images = zca(images)
|
27 |
+
grid_zca = make_grid(zca_images, nrow=2, normalize=True).cpu().numpy()
|
28 |
+
return np.transpose(grid_zca,[1,2,0])
|
29 |
+
|
30 |
+
title = 'ZCA Whitening with Kornia!'
|
31 |
+
description = '''[ZCA Whitening](https://paperswithcode.com/method/zca-whitening) is an image preprocessing method that leads to a transformation of data such that the covariance matrix is the identity matrix, leading to decorrelated features:
|
32 |
+
*Note that you can upload only image files, e.g. jpg, png etc and there sjould be atleast 2 images!*
|
33 |
+
Learn more about [ZCA Whitening and Kornia](https://kornia.readthedocs.io/en/latest/_modules/kornia/enhance/zca.html)'''
|
34 |
+
|
35 |
+
iface = gr.Interface(fn=predict,
|
36 |
+
inputs=['files', gr.Slider(0.01, 1)],
|
37 |
+
outputs=gr.Image(),
|
38 |
+
allow_flagging="never",
|
39 |
+
title=title,
|
40 |
+
description=description
|
41 |
+
)
|
42 |
+
|
43 |
+
if __name__ == "__main__":
|
44 |
+
iface.launch(show_error=True)
|