File size: 5,324 Bytes
b758fc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

import gradio as gr
import PIL.Image
import torch
import torchvision.transforms.functional as TF

from model import Model
from utils import (
    DEFAULT_STYLE_NAME,
    MAX_SEED,
    STYLE_NAMES,
    apply_style,
    randomize_seed_fn,
)


def create_demo(model: Model) -> gr.Blocks:
    def run(
        image: PIL.Image.Image,
        prompt: str,
        negative_prompt: str,
        style_name: str = DEFAULT_STYLE_NAME,
        num_steps: int = 25,
        guidance_scale: float = 5,
        adapter_conditioning_scale: float = 0.8,
        adapter_conditioning_factor: float = 0.8,
        seed: int = 0,
        progress=gr.Progress(track_tqdm=True),
    ) -> PIL.Image.Image:
        image = image.convert("RGB")
        image = TF.to_tensor(image) > 0.5
        image = TF.to_pil_image(image.to(torch.float32))

        prompt, negative_prompt = apply_style(style_name, prompt, negative_prompt)

        return model.run(
            image=image,
            prompt=prompt,
            negative_prompt=negative_prompt,
            adapter_name="sketch",
            num_inference_steps=num_steps,
            guidance_scale=guidance_scale,
            adapter_conditioning_scale=adapter_conditioning_scale,
            adapter_conditioning_factor=adapter_conditioning_factor,
            seed=seed,
            apply_preprocess=False,
        )[1]

    with gr.Blocks() as demo:
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    image = gr.Image(
                        source="canvas",
                        tool="sketch",
                        type="pil",
                        image_mode="L",
                        invert_colors=True,
                        shape=(1024, 1024),
                        brush_radius=4,
                        height=600,
                    )
                    prompt = gr.Textbox(label="Prompt")
                    style = gr.Dropdown(label="Style", choices=STYLE_NAMES, value=DEFAULT_STYLE_NAME)
                    run_button = gr.Button("Run")
                with gr.Accordion("Advanced options", open=False):
                    negative_prompt = gr.Textbox(
                        label="Negative prompt",
                        value=" extra digit, fewer digits, cropped, worst quality, low quality, glitch, deformed, mutated, ugly, disfigured",
                    )
                    num_steps = gr.Slider(
                        label="Number of steps",
                        minimum=1,
                        maximum=50,
                        step=1,
                        value=25,
                    )
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.1,
                        maximum=10.0,
                        step=0.1,
                        value=5,
                    )
                    adapter_conditioning_scale = gr.Slider(
                        label="Adapter conditioning scale",
                        minimum=0.5,
                        maximum=1,
                        step=0.1,
                        value=0.8,
                    )
                    adapter_conditioning_factor = gr.Slider(
                        label="Adapter conditioning factor",
                        info="Fraction of timesteps for which adapter should be applied",
                        minimum=0.5,
                        maximum=1,
                        step=0.1,
                        value=0.8,
                    )
                    seed = gr.Slider(
                        label="Seed",
                        minimum=0,
                        maximum=MAX_SEED,
                        step=1,
                        value=0,
                    )
                    randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Column():
                result = gr.Image(label="Result", height=600)

        inputs = [
            image,
            prompt,
            negative_prompt,
            style,
            num_steps,
            guidance_scale,
            adapter_conditioning_scale,
            adapter_conditioning_factor,
            seed,
        ]
        prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        negative_prompt.submit(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )
        run_button.click(
            fn=randomize_seed_fn,
            inputs=[seed, randomize_seed],
            outputs=seed,
            queue=False,
            api_name=False,
        ).then(
            fn=run,
            inputs=inputs,
            outputs=result,
            api_name=False,
        )

    return demo


if __name__ == "__main__":
    model = Model("sketch")
    demo = create_demo(model)
    demo.queue(max_size=20).launch()