File size: 3,492 Bytes
4bde5af
 
 
 
 
 
 
 
 
 
 
7ac2a83
 
4bde5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
041e763
7ac2a83
05800f3
 
 
7ac2a83
 
 
 
 
 
 
 
4bde5af
 
 
 
 
 
 
 
05800f3
4bde5af
 
041e763
4bde5af
 
 
 
 
 
 
041e763
4bde5af
 
 
 
 
 
 
 
041e763
 
4bde5af
 
 
 
041e763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
import sounddevice as sd
import numpy as np
import librosa
import joblib
import uvicorn
import threading
import asyncio
import logging
import io
import soundfile as sf
from typing import List

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

@app.get("/", response_class=HTMLResponse)
async def get(request: Request):
    logger.info("Saving the index page")
    with open("templates/index.html") as f:
        html_content = f.read()
    return HTMLResponse(content=html_content, status_code=200)

@app.get("/health")
def health_check():
    return {"status": "ok"}

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

is_detecting = False
detection_thread = None

model = joblib.load('models/xgb_test.pkl')

class ConnectionManager:
    def __init__(self):
        self.active_connections: List[WebSocket] = []

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        self.active_connections.append(websocket)

    def disconnect(self, websocket: WebSocket):
        self.active_connections.remove(websocket)

    async def send_message(self, message: str):
        for connection in self.active_connections:
            await connection.send_text(message)

manager = ConnectionManager()

def extract_features(audio):
    sr = 16000

    mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
    mfccs = np.mean(mfccs, axis=1)

    chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
    chroma = np.mean(chroma, axis=1)

    contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
    contrast = np.mean(contrast, axis=1)

    centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
    centroid = np.mean(centroid, axis=1)

    combined_features = np.hstack([mfccs, chroma, contrast, centroid])
    return combined_features

async def process_audio_data(audio_data):
    try:
        with io.BytesIO(audio_data) as audio_io:
            audio_io.seek(0)
            audio, sr = sf.read(audio_io, dtype='float32')
    except RuntimeError as e:
        logger.error(f"Failed to read audio data: {e}")
        return

    if audio.ndim > 1:  # If audio has more than one channel, average them
        audio = np.mean(audio, axis=1)

    features = extract_features(audio)
    features = features.reshape(1, -1)
    prediction = model.predict(features)
    is_fake = prediction[0]

    result = 'fake' if is_fake else 'real'
    
    await manager.send_message(result)


@app.post("/start_detection")
async def start_detection():
    global is_detecting

    if not is_detecting:
        is_detecting = True
    return JSONResponse(content={'status': 'detection_started'})

@app.post("/stop_detection")
async def stop_detection():
    global is_detecting
    is_detecting = False
    return JSONResponse(content={'status': 'detection_stopped'})

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await manager.connect(websocket)
    try:
        while True:
            data = await websocket.receive_bytes()
            await process_audio_data(data)
    except WebSocketDisconnect:
        manager.disconnect(websocket)

if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=7860)