File size: 5,169 Bytes
efebc5f
4814c74
efebc5f
830d345
4bde5af
 
81bbb17
4bde5af
 
9b10cb5
4bde5af
 
 
7ac2a83
9b10cb5
4bde5af
3cb6ef7
4bde5af
 
 
 
 
 
55f6480
 
4bde5af
 
4814c74
4bde5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43d9632
 
 
4bde5af
 
 
4814c74
3cb6ef7
 
4bde5af
 
 
 
 
 
 
 
 
 
 
74a687d
 
 
4bde5af
 
43d9632
4bde5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4814c74
43d9632
4814c74
 
 
9b10cb5
 
 
 
 
7ac2a83
 
 
 
 
cfb7438
7ac2a83
4bde5af
74a687d
 
 
3cb6ef7
 
 
 
 
 
 
 
74a687d
4814c74
4bde5af
 
 
041e763
4bde5af
 
 
 
 
 
 
041e763
4bde5af
 
 
830d345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4bde5af
 
 
 
 
041e763
4814c74
 
 
4bde5af
 
 
 
041e763
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import os
os.environ['NUMBA_CACHE_DIR'] = '/tmp/'

from fastapi import FastAPI, WebSocket, WebSocketDisconnect, Request, UploadFile, File
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse, HTMLResponse
from fastapi.staticfiles import StaticFiles
import numpy as np
import librosa
import soundfile as sf
import joblib
import uvicorn
import logging
import io
from pydub import AudioSegment
from typing import List
from collections import deque

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

app.mount("/static", StaticFiles(directory="static"), name="static")

@app.get("/", response_class=HTMLResponse)
async def get(request: Request):
    logger.info("Serving the index page")
    with open("templates/index.html") as f:
        html_content = f.read()
    return HTMLResponse(content=html_content, status_code=200)

@app.get("/health")
def health_check():
    return {"status": "ok"}

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

with open("header.webm", 'rb') as source_file:
    header_data = source_file.read(1024)

is_detecting = False

model = joblib.load('models/xgb_test.pkl')

q = deque()

class ConnectionManager:
    def __init__(self):
        self.active_connections: List[WebSocket] = []

    async def connect(self, websocket: WebSocket):
        await websocket.accept()
        self.active_connections.append(websocket)

    def disconnect(self, websocket: WebSocket):
        self.active_connections.remove(websocket)

    async def send_message(self, websocket: WebSocket, message: str):
        await websocket.send_text(message)

manager = ConnectionManager()

def extract_features(audio, sr = 16000):
    mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=13)
    mfccs = np.mean(mfccs, axis=1)

    chroma = librosa.feature.chroma_stft(y=audio, sr=sr)
    chroma = np.mean(chroma, axis=1)

    contrast = librosa.feature.spectral_contrast(y=audio, sr=sr)
    contrast = np.mean(contrast, axis=1)

    centroid = librosa.feature.spectral_centroid(y=audio, sr=sr)
    centroid = np.mean(centroid, axis=1)

    combined_features = np.hstack([mfccs, chroma, contrast, centroid])
    return combined_features

async def process_audio_data(audio_data):
    try:  
        full_audio_data = header_data + audio_data

        audio_segment = AudioSegment.from_file(io.BytesIO(full_audio_data), format="webm")
        wav_io = io.BytesIO()
        audio_segment.export(wav_io, format="wav")
        wav_io.seek(0)
        audio, sr = sf.read(wav_io, dtype='float32')
    except Exception as e:
        logger.error(f"Failed to read audio data: {e}")
        return

    if audio.ndim > 1:  # If audio has more than one channel, average them
        audio = np.mean(audio, axis=1)
    
    features = extract_features(audio)
    features = features.reshape(1, -1)
    prediction = model.predict(features)
    is_fake = prediction[0]
    result = 'fake' if is_fake else 'real'
    q.append(is_fake)
    if len(q) > 2:
        if sum(q) == 2:
            for connection in manager.active_connections:
                await manager.send_message(connection, "global-fake")
            q.clear()
        else:
            q.popleft()
    
    return result

@app.post("/start_detection")
async def start_detection():
    global is_detecting

    if not is_detecting:
        is_detecting = True
    return JSONResponse(content={'status': 'detection_started'})

@app.post("/stop_detection")
async def stop_detection():
    global is_detecting
    is_detecting = False
    return JSONResponse(content={'status': 'detection_stopped'})

@app.post("/upload_audio/")
async def upload_audio(file: UploadFile = File(...)):
    try:

        audio_data = await file.read()

        audio_segment = AudioSegment.from_file(io.BytesIO(audio_data), format=file.filename.split('.')[-1])
        wav_io = io.BytesIO()
        audio_segment.export(wav_io, format="wav")
        wav_io.seek(0)
        audio, sr = sf.read(wav_io, dtype='float32')

        if audio.ndim > 1:
            audio = np.mean(audio, axis=1)

        features = extract_features(audio)
        features = features.reshape(1, -1)
        
        prediction = model.predict(features)
        is_fake = prediction[0]
        result = 'fake' if is_fake else 'real'
        
        return JSONResponse(content={'status': 'success', 'result': result})
    
    except Exception as e:
        logger.error(f"Failed to process audio file: {e}")
        return JSONResponse(content={'status': 'error', 'message': str(e)}, status_code=500)

@app.websocket("/ws")
async def websocket_endpoint(websocket: WebSocket):
    await manager.connect(websocket)
    try:
        while True:
            data = await websocket.receive_bytes()
            result = await process_audio_data(data)
            if result:
                await manager.send_message(websocket, result)
    except WebSocketDisconnect:
        manager.disconnect(websocket)

if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=7860)